中国神经再生研究(英文版) ›› 2018, Vol. 13 ›› Issue (10): 1796-1803.doi: 10.4103/1673-5374.237126

• 原著:周围神经损伤修复保护与再生 • 上一篇    下一篇

生物可降解的脱细胞坐骨神经基质神经导管修复周围神经缺损

  

  • 收稿日期:2018-06-21 出版日期:2018-10-15 发布日期:2018-10-15
  • 基金资助:

    该研究得到了韩国中小企业管理局的资助(S2082152)

Decellularized sciatic nerve matrix as a biodegradable conduit for peripheral nerve regeneration

Jongbae Choi1, Jun Ho Kim1, Ji Wook Jang1, Hyun Jung Kim1, Sung Hoon Choi2, Sung Won Kwon2   

  1. 1 R&D Center, Genewel Co., Ltd., Seongnam-si, Gyeonggi-do, Korea
    2 Department of Surgery, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea
  • Received:2018-06-21 Online:2018-10-15 Published:2018-10-15
  • Contact: Sung Won Kwon, MD, PhD,wizard95@cha.ac.kr.
  • Supported by:

    This study was supported by a grant from the Small and Medium Business Administration (S2082152).

摘要:

自体神经移植物的使用仍然是目前治疗神经缺损的金标准手段,但该修复技术应用会受到供体组织缺失和与组织丧失相关的并发症的限制,最近组织工程导管在神经损伤修复方面显示出了巨大潜力。实验制造了生物可降解的脱细胞坐骨神经基质神经导管,并与不可生物降解的有机硅导管修复效果进行比较。(1)酶联免疫吸附反应结果证实:生物可降解的脱细胞坐骨神经基质神经导管包含神经生长因子、脑源性神经营养因子和层粘连蛋白;(2)扫描电子显微镜显示,生物可降解的脱细胞坐骨神经基质神经导管具有防止瘢痕组织浸润的外壁和允许轴突生长的多孔内部结构;(3)动物实验结果显示:与假手术组和有机硅导管修复坐骨神经缺损比较,生物可降解的脱细胞坐骨神经基质神经导管桥接坐骨神经缺损的大鼠运动和感觉神经功能明显改善,神经再生明显增强;(4)实验结果表明:新型生物可降解的脱细胞坐骨神经基质神经导管有修复周围神经缺损的临床应用潜力。

orcid:0000-0002-1610-5726(Sung Won Kwon)

关键词: 可生物降解, 脱细胞, 胶原, 神经导管, 生长因子, 周围神经损伤, 再生, 硅胶导管, 大鼠模型

Abstract:

The use of autologous nerve grafts remains the gold standard for treating nerve defects, but current nerve repair techniques are limited by donor tissue availability and morbidity associated with tissue loss. Recently, the use of conduits in nerve injury repair, made possible by tissue engineering, has shown therapeutic potential. We manufactured a biodegradable, collagen-based nerve conduit containing decellularized sciatic nerve matrix and compared this with a silicone conduit for peripheral nerve regeneration using a rat model. The collagen-based conduit contains nerve growth factor, brain-derived neurotrophic factor, and laminin, as demonstrated by enzyme-linked immunosorbent assay. Scanning electron microscopy images showed that the collagen-based conduit had an outer wall to prevent scar tissue infiltration and a porous inner structure to allow axonal growth. Rats that were implanted with the collagen-based conduit to bridge a sciatic nerve defect experienced significantly improved motor and sensory nerve functions and greatly enhanced nerve regeneration compared with rats in the sham control group and the silicone conduit group. Our results suggest that the biodegradable collagen-based nerve conduit is more effective for peripheral nerve regeneration than the silicone conduit.

Key words: nerve regeneration, biodegradable, decellularized, collagen, nerve conduit, growth factor, peripheral nerve injury, regeneration, silicone conduit, rat model