中国神经再生研究(英文版) ›› 2021, Vol. 16 ›› Issue (8): 1582-1591.doi: 10.4103/1673-5374.303036

• 原著:脑损伤修复保护与再生 • 上一篇    下一篇

P2X7受体活化能加重脑出血后NADPH氧化酶2诱导的氧化应激

  

  • 出版日期:2021-08-15 发布日期:2021-01-13
  • 基金资助:

    国家自然科学基金项目(81471201,81873750);武汉市科技计划项目(2018060401011316)

P2X7 receptor activation aggravates NADPH oxidase 2-induced oxidative stress after intracerebral hemorrhage

Hong Deng1, Ye Zhang2, Gai-Gai Li1, Hai-Han Yu1, Shuang Bai1, Guang-Yu Guo1, Wen-Liang Guo1, Yang Ma1, Jia-Hui Wang1, Na Liu1, Chao Pan1, Zhou-Ping Tang1, *   

  1. 1Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; 2Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
  • Online:2021-08-15 Published:2021-01-13
  • Contact: Zhou-Ping Tang, MD, ddjtzp@163.com.
  • Supported by:
    This study was supported by the National Natural Science Foundation of China, Nos, 81471201, 81873750, and the Science and Technology Plan Project of Wuhan of China, No. 2018060401011316 (all to ZPT).

摘要:

氧化应激参与脑出血后继发性损伤的重要病理过程,而由异常积累的细胞外ATP激活的P2X7受体在中枢神经系统氧化应激中发挥重要作用,但是P2X7受体活化在脑出血后氧化应激的作用尚不明了。实验通过右侧基底神经节立体定向注射0.075 U VII型胶原酶诱导脑出血小鼠模型。结果发现,脑出血后24h时P2X7受体表达达到峰值,且主要位于神经元中。腹腔注射100 mg/kg A438079可抑制P2X7受体,减少损伤脑组织中NADPH氧化酶2的表达和丙二醛的产生,同时增加损伤脑组织中超氧化物歧化酶和谷胱甘肽/氧化型谷胱甘肽的水平,并减轻脑出血后的神经系统损害、脑水肿以及细胞凋亡。而腹腔注射P2X7受体激动剂BzATP(30 nmol)和抑制剂A438079(100 mg/kg)可抑制脑出血后细胞外信号调节激酶1/2和核因子κB活化。以细胞外信号调节激酶1/2抑制剂U0126(2 µg)脑室注射可阻断细胞外信号调节激酶1/2活化,并减少脑出血后P2X7受体活化引起的NOX2介导的氧化应激。同样以核因子κB抑制剂JSH-23(3.5 µg)脑室注射,可抑制核因子κB表达,并减少由P2X7受体激活引起的NOX2介导的氧化应激。同样腹腔注射NOX2拮抗剂GSK2795039 (100 mg/kg)可减轻脑出血后P2X7受体介导的氧化应激、神经损伤和脑水肿。实验研究表明脑出血后P2X7受体活化可通过通过细胞外信号调节激酶1/2和核因子κB途径加重了NOX2诱导的氧化应激。实验于2016年8月26日经华中科技大学伦理委员会批准,批准号TJ-A20160805。

https://orcid.org/0000-0002-4153-8590 (Zhou-Ping Tang)

关键词: 中枢神经系统, 脑, 卒中, 损伤, 修复, 因子, 通路, 炎症

Abstract: Oxidative stress is a crucial pathological process that contributes to secondary injury following intracerebral hemorrhage. P2X7 receptor (P2X7R), which is activated by the abnormal accumulation of extracellular ATP, plays an important role in the regulation of oxidative stress in the central nervous system, although the effects of activated P2X7R-associated oxidative stress after intracerebral hemorrhage remain unclear. Mouse models of intracerebral hemorrhage were established through the stereotactic injection of 0.075 U VII collagenase into the right basal ganglia. The results revealed that P2X7R expression peaked 24 hours after intracerebral hemorrhage, and P2X7R expressed primarily in neurons. The inhibition of P2X7R, using A438079 (100 mg/kg, intraperitoneal), reduced nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) expression and malondialdehyde generation, increased superoxide dismutase and glutathione/oxidized glutathione levels, and alleviated neurological damage, brain edema, and apoptosis after intracellular hemorrhage. The P2X7R inhibitor A438079 (100 mg/kg, intraperitoneal injection) inhibited the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor kappa-B (NF-κB) after intracerebral hemorrhage. Blocking ERK1/2 activation, using the ERK1/2 inhibitor U0126 (2 µg, intraventricular injection), reduced the level of NOX2-mediated oxidative stress induced by P2X7R activation after intracellular hemorrhage. Similarly, the inhibition of NF-κB, using the NF-κB inhibitor JSH-23 (3.5 µg, intraventricular), reduced the level of NOX2-mediated oxidative stress induced by P2X7R activation. Finally, GSK2795039 (100 mg/kg, intraperitoneal), a NOX2 antagonist, attenuated P2X7R-mediated oxidative stress, neurological damage, and brain edema after intracerebral hemorrhage. The results indicated that P2X7R activation aggravated NOX2-induced oxidative stress through the activation of the ERK1/2 and NF-κB pathways following intracerebral hemorrhage in mice. The present study was approved by the Ethics Committee of Huazhong University of Science and Technology, China (approval No. TJ-A20160805) on August 26, 2016.

Key words: brain, central nervous system, factor, inflammation, injury, pathways, repair, stroke