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Abstract  
Alzheimer’s disease, among the most common neurodegenerative disorders, is characterized by 
progressive cognitive impairment. At present, the Alzheimer’s disease main risk remains genetic 
risks, but major environmental factors are increasingly shown to impact Alzheimer’s disease 
development and progression. Microglia, the most important brain immune cells, play a central 
role in Alzheimer’s disease pathogenesis and are considered environmental and lifestyle “sensors.” 
Factors like environmental pollution and modern lifestyles (e.g., chronic stress, poor dietary habits, 
sleep, and circadian rhythm disorders) can cause neuroinflammatory responses that lead to 
cognitive impairment via microglial functioning and phenotypic regulation. However, the specific 
mechanisms underlying interactions among these factors and microglia in Alzheimer’s disease are 
unclear. Herein, we: discuss the biological effects of air pollution, chronic stress, gut microbiota, sleep 
patterns, physical exercise, cigarette smoking, and caffeine consumption on microglia; consider how 
unhealthy lifestyle factors influence individual susceptibility to Alzheimer’s disease; and present the 
neuroprotective effects of a healthy lifestyle. Toward intervening and controlling these environmental 
risk factors at an early Alzheimer’s disease stage, understanding the role of microglia in Alzheimer’s 
disease development, and targeting strategies to target microglia, could be essential to future 
Alzheimer’s disease treatments.
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particulate matter with diameter < 2.5 µm

Introduction 
Alzheimer’s disease (AD), the most common cause of dementia, is a 
neurodegenerative disease characterized by memory loss and progressive 
cognitive impairment (Leng and Edison, 2021). Other clinical AD symptoms 
include language dysfunction, visuospatial difficulties, and personality 
changes, which seriously reduce patient quality of life and cause heavy 
social burdens (Holtzman et al., 2011). According to Alzheimer’s Disease 
International, globally, 75% of patients with dementia are undiagnosed, and 
in some low- and middle-income countries, this proportion may be as high 
as 90%. With their latest data, the World Health Organization estimated 
that in 2019, 55 million people suffered from dementia; this number is 
expected to rise to 139 million by 2050 (No authors listed, 2023). Primary 
AD pathology includes brain amyloid plaque depositions, which are formed 
by amyloid-β (Aβ) aggregation and neurofibrillary tangles triggered by tau 
hyperphosphorylation (Villemagne et al., 2013; Rickman et al., 2022; Roda et 
al., 2022). 

Microglia, brain myeloid cells, act as the first-line immune protection  in 
brain injury and disease (Estudillo et al., 2023). In the 1990s, Caudros et al. 
first suggested that microglia originate from the yolk sac during primitive 
hematopoiesis and fill the central nervous system (CNS) before vasculogenesis 
(Cuadros et al., 1993). From a morphological perspective, microglia are 
classified as  ramified (resting), activated, or ameboid (phagocytotic). 
Increasing evidence indicates that microglia present a diverse range of 
phenotype states during chronic inflammation, which are categorized as: 
proinflammatory M1 and activated M2 (Orihuela et al., 2016; Ransohoff, 
2016). However, the M1/M2 dichotomy is criticized as an oversimplification 
that cannot model in vivo conditions (Hansen et al., 2018). Current 
investigators increasingly stress the importance of studying various microglial 
phenotypes due to the complex process of microglial activation, and have 
revealed several new microglial phenotypes associated with AD. These include 
dark microglia, which are abundant in AD pathology, chronic unpredictable 
stress, and ageing (Bisht et al., 2016); disease-associated microglia (DAM), 
which re observed in AD and localized near Aβ plaques (Keren-Shaul et al., 
2017); microglial neurodegenerative phenotype, which are isolated from 
the brain and spinal cord of amyloid precursor protein (APP)-PS1 mice (Bisht 
et al., 2018); activated response microglia, which are enriched with AD risk 

genes (Sala Frigerio et al., 2019); and human Alzheimer’s microglia (Srinivasan 
et al., 2020). Clearly, microglia are likely key participants in AD.

AD is a chronic disease influenced by both the external environment and 
genetics. The latter play an important role in AD development (Silva et al., 
2019). Gene mutations such as APP or PS1 can directly lead to familial AD. 
There is consensus that the ε4 allele of the apolipoprotein E gene (APOE4) is 
the most significant genetic risk factor for sporadic AD (Martens et al., 2022). 
In addition, during AD development, microglia acquire an AD signature; for 
example, many AD risk genes are highly enriched in microglia, some of which 
are exclusively expressed in microglia. These include apolipoprotein E (APOE), 
triggering receptor expressed on myeloid cells 2 (TREM2), ATP binding 
cassette subfamily A member 7 (ABCA7), complement C3b/C4b receptor 
1 (CR1), Spi-1 proto-oncogene (SPI1), and MS4A-related family (MS4As) 
(Bertram et al., 2008; Efthymiou and Goate, 2017), highlighting the important 
role of microglia in sporadic AD.

In addition to these important genetic risk factors, environmental risk also 
plays a role that should not be underestimated. Up to one-third of patients 
with AD may be affected by modifiable risk factors (Livingston et al., 2017). 
Environmental factors may affect microglia, and microglia may in turn affect 
an individual’s susceptibility to AD, as microglial dysfunction is a major risk 
factor for AD (Bisht et al., 2018; Katsumoto et al., 2018; Phan and Malkani, 
2019). Stress during both perinatal and adult development can lead to 
microglial function changes, which in turn affect cognitive function (Tay et al., 
2017). Specifically, particulate matter (PM) with diameter < 2.5 µm (PM2.5) can 
reach the CNS through various routes and there activate microglia to cause 
inflammation and nerve damage, leading to AD (Shi et al., 2020). Dietary 
factors can modulate gut microbiota composition, and the gut microbiota may 
be associated with AD pathogenesis by altering microglial function (Bairamian 
et al., 2022). Circadian rhythm disturbance and other poor lifestyle factors 
cause microglia neurodegeneration (Phan and Malkani, 2019). While neither 
genetic risk factors nor environmental exposures affect AD alone, together 
they may interact to promote AD progression; however, those interactions are 
poorly understood (Dunn et al., 2019). Almost all environmental exposures 
described herein may interact with the APOE genotype, and thus affect 
cognitive function (Rajan et al., 2021).
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Herein, we discuss the impacts of environmental risk factors (e.g., air 
pollution) and modern lifestyles (e.g., chronic stress, poor eating habits 
and circadian rhythm disturbance, inadequate physical exercise) on AD 
pathogenesis and progression, by contributing to pathogenic microglial 
phenotypes and modulating their functions. These cumulative findings 
support the idea that microglial dysfunction is a central mechanism of 
AD development and pathology progression. The positive roles of healthy 
environment and lifestyle factors are discussed in relation to reducing 
individual susceptibility to AD, and their modulation of microglial function is 
considered as a potential future therapeutic modality.

Retrieval Strategy
An online PubMed search was performed, retrieving articles published through 
August 31, 2023. Combined MeSH terms were used to maximize search 
specificity and sensitivity: “Alzheimer’s disease”; “microglia”; “environmental 
pollution”; “chronic stress”; “gut microbiota”; “PM2.5”; “heavy metals”; “sleep”; 
“smoking”; “physical exercise,” and “coffee.” The results were further screened 
by title and abstract, and only studies exploring the interplay between 
microglia and environmental AD risk factors were included, to facilitate 
the goal of reviewing the effects of environmental risk factors on microglia 
characteristics in AD. No language or study type restrictions were applied.

Environmental Exposure Contributions to 
Alzheimer’s Disease Risk
Air pollution
Air pollution, a complex mixture of substances, is a global environmental 
problem that kills 7 million people annually worldwide (Colao et al., 2016). Air 
pollution contains PM, ozone, nitrogen dioxide, and other substances. Among 
these, the most harmful to our health is ambient fine particulate matter 
PM2.5 (Choi et al., 2018). There is a strong link between PM2.5 and cognitive 
dysfunction, including AD (Thiankhaw et al., 2022). Studies have also verified 
how PM2.5 enters the CNS, including via both the blood-brain barrier (BBB) 
and olfactory neurons (Ajmani et al., 2016). The BBB is a highly selective 
semipermeable membrane that restricts the flow of many substances into the 
brain and plays an important role in maintaining CNS homeostasis (Alahmari, 
2021). In animal models, PM-mediated tight junction protein expression 
leads to reduced BBB integrity and increased permeability (Oppenheim et 
al., 2013). In addition, the olfactory nerve is considered a critical pathway by 
which PM2.5 affects the CNS (Li et al., 2022). Rodent models have confirmed 
that PM can access the brain via the nose (Elder et al., 2006). Considerable 
PM parts can be deposited in the nasopharyngeal region, to be translocated 
further into multiple brain regions, circumventing the tight BBB (Oberdorster 
et al., 2004). By entering the CNS through these two main pathways, PM2.5 
exposure increases AD risk. However, the exact mechanism and causal 
relations between PM2.5 and AD remain unclear, requiring further research.

PM2.5 exposure
Investigators increasingly show that long-term PM2.5 exposure higher than 
that specified by United States Environmental Protection Agency (US EPA) 
standards may be related to cognitive decline and accelerated brain ageing 
(Kang et al., 2021; Lee et al., 2021; Patten et al., 2021). Observational studies 
in children (Calderon-Garciduenas et al., 2015), older adults (Ailshire and 
Crimmins, 2014), and dogs (Calderon-Garciduenas et al., 2008b) living in 
areas with higher PM2.5 concentrations have indicated that this prolonged 
exposure can induce neuroinflammation, increase AD risk, and accelerate 
AD pathogenesis. Some of the AD-linked molecular and cellular alterations 
caused by PM2.5 include mitochondrial dysfunction, oxidative stress, microglial 
activation, neuroinflammation, synaptic dysfunction, and neurovascular 
dysfunction (Gonzalez-Maciel et al., 2017; Wang et al., 2020a). PM2.5 can also 
alter major AD markers, including elevated levels of Aβ accumulation, tau 
hyperphosphorylation, and misfolded α-synuclein (Cheng et al., 2016; Costa 
et al., 2017).

Current clinical studies have shown a clear correlation between environmental 
air pollution and AD pathology, based on three methods: biomarkers, 
neuroimaging, and epigenetics. The first line of evidence has shown that in 
the cerebrospinal fluid of children and young people living long-term in areas 
where annual average PM2.5 concentrations exceed the US EPA standard level 
long-term, Aβ and brain-derived neurotrophic factor (BDNF) are reduced, and 
tau protein, inflammation, and cytokine marker concentrations are increased 
(Calderon-Garciduenas et al., 2018). The second line of evidence indicates 
that patients with mild dementia or MCI who live in areas with higher 
PM2.5 concentrations have a higher likelihood of amyloid PET scan positivity 
(Iaccarino et al., 2021). The third line of evidence indicates close relations 
between low deoxyribonucleic acid (DNA) methylation and AD in both 
epidemiological and experimental studies (Bakulski et al., 2012; Chouliaras 
et al., 2013; Wei et al., 2020). Researchers have speculated that PM2.5 can 
reduce genome-wide DNA methylation or global hypomethylation, including 
of BACE1, APOE, and APP (Shou et al., 2019). In summary, effects of PM2.5 
on AD can be detected by cerebrospinal fluid biomarkers, DNA methylation 
levels, and amyloid deposition on PET scans.

PM2.5-promoted microglial activation
Since microglia-mediated neuroinflammation is a detrimental AD event, 
researchers have assessed whether and how PM2.5 affects microglia function. 
Previous research used diesel exhaust particles (DEPs) phagocytosed by 
microglia to produce superoxide, showing that selective dopaminergic 

Figure 1 ｜ Possible mechanisms by which microglia detect PM2.5 and some AD-
related neuropathologic consequences of this exposure. 
Microglia detect PM2.5 entering the brain via the nasal route. These particles can directly 
damage neurons, activating microglia and causing cytokine release via the peripheral 
systemic inflammatory system through the respiratory tract and activated microglia. AD 
biomarkers changes from PM2.5 exposure include: 1) high amyloid PET scan positivity; 2) 
low DNA methylation; 3) cerebrospinal fluid (reduced Aβ42, Aβ40, and BDNF; increased 
t-tau, p-tau, and inflammatory cytokines IL-1β, IL-6, and TNF-α). Created with Adobe 
Illustrator CS6. AD: Alzheimer’s disease; Aβ: amyloid-β; BDNF: brain-derived neurotrophic 
factor; DNA: deoxyribonucleic acid; IL-1β: interleukin-1β; IL-6: interleukin-6; PET: positron 
emission tomography; PM2.5: particulate matter (PM) with diameter < 2.5 µm; TNF-α: 
tumor necrosis factor. 

neurotoxicity occurred only in the presence of microglia, indicating that 
microglia-derived reactive oxygen species (ROS) are crucial for DEP-
induced  dopaminergic neurotoxicity (Block et al., 2004). This finding 
supported the idea that DEPs are culpable in microglial activation (Block et al., 
2004). Moreover, prolonged exposure to high levels of air pollution leads to 
increased expressions of CD14 (Calderon-Garciduenas et al., 2008a) and the 
microglial marker Iba1 (Bai et al., 2019), indicating that microglia may be the 
main targets of air pollution.

An in vitro experiment showed that DEP exposure affected microglia in 
various ways, including cytotoxicity, oxidative stress, lipid peroxidation, 
neuroinflammation, activation, autophagy, and apoptosis (Bai et al., 2019). 
PM2.5 significantly increased the level of light-chain 3b (LC3b) in microglia, 
resulting in a DAM microglia phenotype representing enhanced phagocytosis 
(Kang et al., 2021). A recent study suggested that PM2.5 decreases microglial 
viability and promotes microglial activation. Specifically, PM2.5 increased the 
introduction of proinflammatory molecular markers (i.e., tumor necrosis 
factor alpha [TNF-α], interleukin-6 [IL-6], interleukin 1 beta [IL-1β], inducible 
nitric oxide synthase [iNOS], and COX-2) while inhibiting the development 
of anti-inflammatory molecular markers (IL-10 and Arg-1) (Kim et al., 2020). 
These data further indicate that PM2.5 mediates AD pathogenesis through 
microglia-produced neuroinflammation and oxidative stress. PM2.5 is now 
widely studied as a cause of neuroinflammation. Exposure to PM2.5 decreases 
the activity of several antioxidant enzymes that scavenge cellular free radicals 
and protect cells, including superoxide dismutase, malondialdehyde, heme 
oxygenase-1 (HO-1), and GSH-Px, while increasing brain ROS (Herr et al., 2021; 
Zhu et al., 2023). One mechanistic study showed that PM2.5 can downregulate 
miR-574-5p, which targets BACE1 through nuclear factor kappa B (NF-κB) p65, 
thereby causing neuroinflammation, disrupting synaptic functional integrity, 
and accelerating cognitive dysfunction (Ku et al., 2017). Another mechanistic 
study showed that PM2.5 exposure activates the microglial HMGB1-NLRP3-
P2X7R signaling pathway and reduces hippocampal neuron viability. That 
group also found that HMGB1-NLRP3 pathway downregulation inhibited 
microglial activation, decreased inflammatory factor production, and restored 
hippocampal neurons functioning (Deng et al., 2022). 

Thought various opinions exist regarding how PM2.5 accelerates AD via 
microglia, and no consensus has formed. PM2.5 may thus directly or indirectly 
activate microglia through three ways. First, by directly activating microglia. 
Second, by activating proinflammatory signals in peripheral tissues or organs, 
including the liver (Jeong et al., 2019), lung (Jia et al., 2021) and cardiovascular 
system (Wang et al., 2015), eliciting a circulating cytokine response (Ruckerl 
et al., 2007) which activates microglia and causes neuroinflammation (Block 
and Calderon-Garciduenas, 2009). And third, by directly damaging neurons 
to activate microglia (Liu et al., 2021). However, given the complexity of PM2.5 
exposure, it is unclear whether it activates microglia through one of these 
modalities or in combination among them in AD pathological conditions. The 
evidence for the influences of PM exposure on microglia are summarized in 
Table 1.

To date, animal model experiments, epidemiological studies, and clinical 
studies have confirmed a causal link between ambient air pollution and AD 
pathology. The underlying mechanism for this may be that PM2.5 activates 
microglia via one or more of the three pathways described above, thereby 
inducing neuroinflammation and oxidative stress and leading to AD biomarker 
changes (Figure 1). In addition to microglia, PM2.5 can also act directly 
on other neural cells. We previously reported that PM2.5 can cause direct 
neuronal damage under very short-term exposure, whereas microglia did 
not play a major role (Liang et al., 2023). However, changes in microglia in AD 
under long-term exposure to PM2.5 require further exploration.
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Heavy metals: powerful AD risk factors 
Among environmental factors, the contributions of heavy metals such as lead 
(Pb), cadmium, and manganese to AD is of interest, given the wide range 
of their population-level exposures. The effects of various common heavy 
metals on AD have been well studied (Plascencia-Villa and Perry, 2021). For 
example, childhood Pb exposure has been shown to lead to memory loss 
and cognitive decline in older age (Reuben et al., 2017). In vitro studies have 
shown that Pb exposure increases the water content of tau in SH-SY5Y cells 
(Bihaqi et al., 2017). Different metals, such as Pb, arsenic, and cadmium, 
may induce Aβ production to the greatest extent through synergistic effects 
(Ashok et al., 2015). However, whether the respective mechanisms are the 
same is still poorly understood (Islam et al., 2022). Some metal chelators, 
such as hydroxypyridones, can interfere with protein folding and prevent its 
undergoing oxidative processes (Singh et al., 2019). Therefore, metal chelator 
studies may facilitate development of novel anti-AD agents as potential 
therapies (Fasae et al., 2021). In summary, adverse environmental factors lead 
to the phenotype of pathogenic microglia and regulate their function, thereby 
increasing individuals’ susceptibility to AD.

Stress 
Though stress is an inevitable part of life, it can also endanger human health 
under certain conditions. Given constantly changing, fast-paced modern 
lifestyles, stress is a frequent conversation topic (McEwen, 2005). Stress is 
divided into acute and chronic. The effects of acute stress can be quickly 
alleviated, after which the condition normalizes. However, chronic stress, 
such as long-term emotional stress, results in homeostatic dysregulation 
that can lead to various diseases, especially in susceptible individuals (Saeedi 
and Rashidy-Pour, 2021). These include, but are not limited to, mental 
illness (Menard et al., 2017), cardiovascular diseases (Franklin et al., 2021), 
gastrointestinal disorders (Alonso et al., 2008), and neurodegenerative 
diseases (Sazonova et al., 2021). Though stress can increase the occurrence, 
and worsen the symptoms, of AD, the most common neurodegenerative 
disease, the mechanism for this relation is as yet unclear.

Stress and cognitive decline: epidemiology and pathology evidence
Growing evidence recognizes chronic psychosocial stress as a risk factor for 
late-onset AD, and a strong contributor to promoting AD brain pathology 
(Gracia-Garcia et al., 2015; Piirainen et al., 2017). Epidemiological, clinical, 
and animal studies suggest that chronic uncontrollable and unpredictable 
stressors are associated with mental illnesses, including depression and 
neurodegenerative disorders like AD (Liu et al., 2017). Epidemiological studies 
have found that depression is an AD risk factor, and that people who are prone 
to psychological stress are at higher risk for AD (Wilson et al., 2003; Alkadhi, 
2012). Chronic psychosocial stress is increasingly considered a risk factor 
for  late-onset AD and its related cognitive impairment (Saeedi and Rashidy-
Pour, 2021). Compared with healthy age-matched controls, patients with 
AD present increased peripheral and CNS cortisol levels, reflecting a relation 
between stress and AD (Popp et al., 2015). In animal experiments, acute 
stress (i.e., acute cold water stress) (Feng et al., 2005), acute unpredictable 
stress (Filipcik et al., 2012) and chronic stress (i.e., chronic restraint stress) 
(Yan et al., 2010), and chronic unpredictable mild stress (Briones et al., 
2012) all increase tau phosphorylation. Similar to the consequences of tau 
phosphorylation, female 5×FAD mice exposed to chronic restraint stress in 
the prepathological stage exhibited elevated BACE1 and APP levels, increased 
neurotoxic Aβ42 levels, and hippocampal plaque deposition (Devi et al., 2010; 
Ray et al., 2011). It has been demonstrated that chronic stress can promote 
the emergence of AD and accelerate its progression through synaptic loss 
and impaired neurogenesis (Xie et al., 2021). For example, social isolation 

Table 1 ｜ Summary of known instances of PM exposure that influence microglia

PM Models Effects Studies

PM2.5 BV-2 cell; primary cortical neurons 
and glia isolated from the cerebral 
cortex of E17 Sprague-Dawley rats

PM2.5 increases transcription of pro-inflammatory M1 and disease-associated microglia phenotype 
molecules, and induces pJNK activation, exacerbating neuronal damage.

Kim et al., 2020

PM2.5 Primary microglia PM2.5 exposure increased oligomeric amyloid-beta stimulated reactive oxygen species levels in 
microglia, inducing interleukin-1β production and activation of NLRP3 inflammasome, and leading to 
neuronal damage.

Wang et al., 2018a

nPM N2a-APP/swe cells nPM exposure increased amyloid-β oligomers, causing selective atrophy of hippocampal CA1 neurites. Cacciottolo et al., 2017
PM2.5 PM2.5-polluted human brain models PM2.5 exposure triggered M1 microglia phenotype, which released additional proinflammatory 

mediators and nitric oxide, exacerbating synaptic damage, phosphorylated tau accumulation, and 
neuronal death.

Kang et al., 2021

PM2.5 BALB/c mice; BV2 microglia Compound essential oils relieved brain oxidative stress, caused by PM2.5 exposure, by inhibiting 
autophagy through the 5'-adenosine monophosphate-activated protein kinase/mammalian target of 
rapamycin pathway.

Ren et al., 2021

DEP Adult female Fisher 344 rats; female 
mice; primary microglia and neurons

DEP selectively damaged dopamine neurons through phagocytic activation of microglial NADPH 
oxidase, causing oxidative insult.

Block et al., 2004

Carbon black; 
DEPs

BV-2 cells; Sprague-Dawley rats Traffic-related particulate matter induced: cytotoxicity, lipid peroxidation, microglial activation, and 
inflammation; microglia autophagy and caspase-3 regulation.

Bai et al., 2019

PM2.5 Mice PM2.5 exposure activated high mobility group box 1-NOD-like receptor thermal protein domain 
associated protein 3-P2X purinoceptor7 signaling pathway in microglia, reducing hippocampal neuron 
activity.

Deng et al., 2022

PM2.5 C57BL/6J mice Short-term PM2.5 administration via atomization or nasal drops activated astrocytes and microglia. Liang et al., 2023

DEP: Diesel exhaust particles; nPM: nanosized particulate matter; PM2.5: particulate matter with diameter < 2.5 µm.

accelerated AD onset and spatial working memory impairment in adult APP/
PS1 transgenic mice (Huang et al., 2011). Overall, these studies suggest that 
stress can exacerbate and accelerate AD progression.

Effects of stress on microglia: a double-edged sword?
Although the mechanism is not yet clear, microglia are suspected to play a 
significant role in promoting AD development and progression under chronic 
stress. Chronic stress may activate microglia, induce inflammation, and 
worsen cognitive function in the adult brain (Piirainen et al., 2017). In the 
hippocampus of stressed rats, Iba1 and CD11b protein levels were significantly 
increased compared with those of non-stressed control rats; thus, chronic 
mild stress induced microglial proliferation in the hippocampus (Du Preez et 
al., 2021). Chronic stress also selectively increases the density of microglia in 
certain stress-sensitive brain regions, such as the prelimbic cortex (Han et al., 
2020), medial prefrontal cortex (Bollinger et al., 2016), and hippocampal CA3 
region (Bian et al., 2012). Quantification of microglia from mice subjected 
to restraint stress indicate that augmented density is caused by proliferation 
(Nair and Bonneau, 2006). Although these studies imply that chronic stress 
can stimulate microglial proliferation, the mechanism of action is poorly 
understood. In a Chinese herbal medicine study, chronic stress modulated 
microglia toll-like receptor 4 (TLR4)-I-kappa B kinase-NF-κB signaling 
pathway, promoting the release of inflammatory factors from hippocampal 
microglia and leading to neuroinflammation (Qu et al., 2021). Nrf2-HO-1-
NLRP3 signaling was inhibited in microglia exposed to stress using Nrf2 siRNA 
transfection, thereby promoting microglial polarization to M1 and inhibiting 
microglial polarization to M2 (Tao et al., 2021). More mechanisms are under 
investigation, the discovery of which will facilitate new AD therapeutics.

One urgent question is whether chronic stress alters microglial morphology. 
As it is tightly coupled to its function, using different stress models had led 
to varying results. Chronic stress causes a marked transition of microglia 
from a ramified-resting state to a non-resting state. A primary microglial 
morphological change observed in the chronic stress paradigm is a 
hyperramification state, with longer and more branched processes (Hinwood 
et al., 2013; Hellwig et al., 2016). This suggests that chronic stress increases 
microglial structural complexity but does not make them larger. Another 
main microglial change is cellular deramification, with increased soma size 
and shortened processes (Kreisel et al., 2014; Wohleb et al., 2014). However, 
Lehmann and colleagues found that neither acute nor chronic social defeat 
stress changed microglial morphology, including cell perimeter length, cell 
spread, eccentricity, roundness, or soma size (Lehmann et al., 2016). These 
cumulative results indicate that there is currently no consensus regarding the 
effects of stress on microglial morphology.

In the mature healthy brain, microglia remove cellular debris and necrotic or 
apoptotic cells through phagocytosis. Several investigators have investigated 
whether exposure to stress modulates the phagocytic function of microglia. 
Milior et al. (2016) exposed mice to a chronic stressor and  examined 
hippocampal CA1 radiatum with electron microscopy, to assess the number 
of phagocytic inclusions per Iba1-positive microglial process. They found that 
exposure to stressful (versus control) environments increased the microglial 
inclusion index. Similarly, enhanced microglial phagocytic capacity was found 
in Thy-1-GFP transgenic mice subjected to a 14-day chronic unpredictable 
stress (CUS) model (Wohleb et al., 2018). These results indicate that CUS 
increases the microglial phagocytosis of neuronal components. Lehmann et 
al. (2016) also replicated this phenomenon with chronic, but not acute social 
defeat. Thus, stress may induce neuronal remodeling by enhancing microglial 
phagocytic function.
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In recent decades, efforts have been made to determine how stresses alter 
microglia activity of (Frank et al., 2019; Woodburn et al., 2021). Although 
the specific signaling pathways by which stress activates microglia are 
unclear (Wohleb et al., 2016), a growing body of evidence implicates several 
factors, such as cytokines, pattern recognition receptor agonists, and stress 
hormones. First, exposure to stressors releases pathogen-associated and 
danger-associated molecular patterns into the bloodstream, which can trigger 
microglia and amplify neuroinflammatory responses (Wenzel et al., 2020). 
Second, the hypothalamic-pituitary-adrenal (HPA) axis plays an important role 
in stress-induced microglial activation (Frank et al., 2012). Stress can initiate 
proinflammatory responses in microglia by activating the HPA axis, releasing 
more corticotropin-releasing hormone and glucocorticoids (GCs) (Van den 
Bergh et al., 2020). GCs are a suspected link between chronic stress and 
altered microglial structure and function. Moreover, both pharmacological 
(glucocorticoid receptor [GR] antagonist RU486) and surgical (adrenalectomy) 
treatments block stress-induced microglial priming (Frank et al., 2012) 
and reduce markers of phagocytosis on petrified microglia following CUS 
(Pedrazzoli et al., 2019). These cumulative studies demonstrate that GCs may 
play a pivotal role in stress-induced priming of microglial activation. Although 
the mechanism of cognitive impairment caused by chronic stress is unclear, 
several GR-regulated genes are closely related to AD. First, expression of GR-
regulated gene Dusp1, which phosphorylates tau kinase, is decreased during 
chronic stress, leading to tau hyperphosphorylation. DUSP1 expression is also 
decreased in the brains of AD mice compared with age-matched controls 
(Arango-Lievano et al., 2016). Another GR-regulated  gene,  Sgk1, a key 
modifier of tau pathology in AD,  is upregulated in the brains of participants 
with AD. Sgk1 inhibition reduces tau neuropathology and improves cognition 
in preclinical AD mouse models (Elahi et al., 2021).

Chronic stress is a modifiable AD risk factor. This relation may be caused by 
HPA axis dysregulation and other molecular mechanisms, which can lead 
to a series of microglial changes. Under chronic stress, elevated GC levels 
prompt microglial proliferation and enhance their phagocytic ability, though 
there is no uniform conclusion regarding the morphological effects. These 
changes allow microglia to undergo a notably increased proinflammatory 
response, leading to increased neurotoxic cytokines, accumulating Aβ, and 
tau. These combined factors may accelerate AD onset (Figure 2). Determining 
the underlying mechanism of the association between chronic stress and AD 
may help develop new therapeutic targets and chronic stress management 
options.

Gut Microbiota 
There is  a close homology among animals,  including humans, in 
their microbial communities, which are comprised of fungi, archaea, bacteria, 
and viruses. Gut microbiota, which make up the gastrointestinal community, 
represents the greatest density and absolute abundance of microorganisms 
in the human body. Throughout the human life span, the gut microbiota is a 
dynamic, diverse community that may change in response to both extrinsic 
and host factors, such as drugs (Vich Vila et al., 2020), diet (David et al., 2014), 
age, and sex (de la Cuesta-Zuluaga et al., 2019). The microbiota-gut-brain axis, 
a complex bidirectional communication system between the brain and gut 
microbiota, is mediated by direct and indirect signaling, including nervous, 
endocrine, and immune mechanisms (Martin et al., 2018). The gut microbiota 
is a critical regulator within the microbiota-gut-brain axis, sensing, modifying, 
and tuning chemical signals from the brain. It may also affect AD pathogenesis 
and cognitive decline.

Gut microbiota in AD: positive progress and unclear mechanism 
Researchers recently identified a strong correlation between altered gut 
microbiota and cognitive performance (Hu et al., 2016). It has also been 
found that microbiota composition and diversity are perturbed in AD mice 
(Fox et al., 2019), implying that the microbiota has a nonnegligible role in AD 
progression. Compared with control participants, gut microbiome microbial 
richness and diversity were both decreased in participants with AD (Jung et 
al., 2022). The abundance of phylum-level Firmicutes and Actinobacteria is 
lower, and the abundance of Bacteroidetes higher, in those with AD (Vogt 

et al., 2017). At the family level, Helicobacteraceae, Coriobacteriaceae, 
and  Desulfovibrionaceae are significantly more abundant in APP/PS1 
mice compared with wild-type (WT) mice. At the genus level, the mean 
abundances of Odouribacter and Helicobacter in APP/PS1 mice are obviously 
higher compared with WT mice, and Prevotella is significantly higher in 
WT compared with APP/PS1 mice (Shen et al., 2017). However, 16S rDNA 
sequencing showed gut microbiota diversity increases in AD Drosophila. At 
the family level, the proportions of Acetobacteraceae and Lactobacillaceae in 
AD Drosophila decreased dramatically, although they were largely enriched 
in the Drosophila microbiota. At the genus level, the mean control group 
abundances of Acetobacter and Lactobacillus were significantly higher 
compared with AD flies (Kong et al., 2018). Furthermore, metabolites derived 
from the gut microbiota, such as trimethylamine N-oxide, are elevated in 
the cerebrospinal fluid of individuals with AD, and elevated trimethylamine 
N-oxide is associated with AD pathology (Vogt et al., 2018). Despite significant 
differences and variation in gut microbiota among AD model species, these 
studies suggest a close relation between disturbances in gut microbiota and 
AD (Table 2). 

Despite the complex and numerous gut microbiota, several mechanisms 
for its involvement in, and impact on, AD have been explored. Asparagine 
endopeptidase (AEP), also known as delta-secretase, can simultaneously 
cleave increased APP and tau in the brain to form amyloid plaques and 
neurofibrillary tangles (Chen et al., 2021). In addition, enhancer-binding 
protein beta (C/EBPβ) is an Aβ and proinflammatory cytokine-activated 
transcription factor that regulates AEP transcription and protein levels 
in an age-dependent manner (Wang et al., 2018b). In the brains of mice 
with fecal transplant from patients with AD, investigators have found that 
C-EBPβ-AEP signaling is significantly activated and that mRNA transcription 
of major enzymes involved in arachidonic acid (AA) metabolism is increased. 
Elevated enzymes lead to upregulation of various AA metabolites, including 
prostaglandin E2 receptor EP3 subtype-like (PGE2), thromboxane B2, LKB4, 
and 12-HHT, among others, which stimulate microglial activation to aggravate 
neuroinflammation (Chen et al., 2022). EBPβ regulates proinflammatory 
genes in glial cells, such as nitric oxide synthase 2, IL-1β, IL-6, and TNF-α 
(Straccia et al., 2011). The most direct route may be that gut microbiota in the 
feces of patients with AD directly upregulates C-EBPβ-AEP signaling, and APP 
and tau are cleaved by activated AEPs, directly triggering AD pathogenesis (Xu 
et al., 2023). Hypothesized relations between intestinal microbiota imbalance 
and AD pathology, as well as the repair of the microbiota-gut-brain axis by 
antibiotic therapy and probiotic supplements, are shown in Figure 3.

Several classic interventions have been used to assess the relations between 
the gut microbiota and AD, including probiotic or antibiotic treatments, 
establishment of sterile animals, and fecal microbiota transplantation. These 
have demonstrated cognitive function improvements among patients with AD 
after 12-week probiotic consumption (Akbari et al., 2016). In 3×Tg-AD mice, 
early-stage AD progression was modulated by SLAB51 probiotic formulation 
(Bonfili et al., 2017). In a rat AD model, Morris water maze indicated 
beneficial effects of probiotics on cognitive function (Bonfili et al., 2017). 
Continuous ingestion of probiotics and prebiotics have been showed to delay 
neurocognitive decline and reduce AD risk (Tillisch et al., 2013; Akbari et al., 
2016; Abraham et al., 2019; Kobayashi et al., 2019). Furthermore, a long-term 
broad-spectrum combined antibiotic regimen decreased Aβ plaque deposition 
and improved cognitive functions in a murine AD model (Minter et al., 2016). 
In rodent AD models, antibiotics had similar effects on AD pathogenesis, and 
reduced microglial activation, inflammatory cytokines, and brain Aβ (Yulug et 
al., 2018; Zhao et al., 2022). Microbiota transplantation from aged APP/PS1 
mice significantly increased Aβ in germ-free (GF) APP/PS1 mice (Harach et 
al., 2017). Additionally, a phase 3 clinical trial in China found that the sodium 
oligomannate GV-971 inhibits intestinal microecological disorders and related 
phenylalanine/isoleucine accumulation, controls neuroinflammation, and 
reverses cognitive impairment (Wang et al., 2019; Xiao et al., 2021). These 
cumulative studies support a close relation between gut microbiota and AD; 
while the specific mechanism remains unclear, neuroinflammation may be an 
important link.

Table 2 ｜ Variation in gut microbiota in Alzheimer’s disease (AD) patients and AD models

Species Increased abundance Decreased abundance Studies

AD patients Bacteroidetes Firmicutes, Bifidobacterium Vogt et al., 2017; Liu et al., 2019
AD patients Actinobacteria Bacteroides, Ruminococcus, Lachnospiraceae, and 

Selenomonadales
Zhuang et al., 2018

AD patients Bifidobacterium, Sphingomonas, Lac​ tobacillus​, and Blautia Odoribacter, Anaerobacterium, and Papillibacter Zhou et al., 2021
APP/PS1 mice Enterobacteriaceae and Verrucomicrobiaceae Bacteroidaceae and Rikenellaceae Chen et al., 2020
APP/PS1 mice Bacteroidetes and Tenericutes phylum  Firmicutes, Proteobacteria, and Actinobacteria Harach et al., 2017
APP/PS1 mice Helicobacteraceae, Desulfovibrionaceae, Odoribacter, and Helicobacter Prevotella Shen et al., 2017
5×FAD mice Proteobacteria and Firmicutes populations Bacteroidetes population Lee et al., 2019
5×FAD mice Firmicutes, Clostridium leptum group Bacteroidetes Brandscheid et al., 2017
3×Tg AD mice Bacteroidetes and Firmicutes Cyanobacteria, Proteobacteria, Tenericutes, and 

Verrucomicrobia
Syeda et al., 2018

AD drosophila / Acetobacteraceae and Lactobacillaceae Kong et al., 2018
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Figure 3 ｜ Postulated links between gut microbiota dysregulation and AD pathology, 
and microbiota-gut-brain axis reconditioning with antibiotic treatment and probiotic 
supplementation.
Intestinal flora dysregulation in patients with AD allows increased intestinal barrier 
permeability, leading to microglial activation and neuroinflammation, which promotes 
Aβ plaque accumulation and tau hyperphosphorylation, ultimately leading to cognitive 
impairment. Antibiotics can modulate microbiota composition and probiotics can 
normalize intestinal bacteria. Created with Adobe Illustrator CS6. AD: Alzheimer’s 
disease; Aβ: amyloid-β; IL-1β: interleukin-1β; IL-6: interleukin-6; TNF-α: tumor necrosis 
factor. 

processes, more segmented branches and terminal points, and greater 
density. Depletion of intestinal bacteria by antibiotic treatment induced a 
microglia​ phenotype comparable to that of GF mice. Microglial immaturity 
and malformation were restored by reintroducing complex, live microbiota 
or microbial metabolites such as short-chain fatty acids (Erny et al., 2015). 
Notably, the double transgenic APP/PS1 AD mouse model housed under GF 
conditions showed lower brain Aβ levels and deposition compared with APP/
PS1 mice (Harach et al., 2017). 

These studies emphasize the indispensable role of gut microbiota in microglia 
maturation and function, raising the possibility that microglia may require 
continuous input from the host microbiota to maintain CNS homeostasis. The 
mechanism by which unhealthy gut microbiota activates microglia remains to 
be determined. Close relations between potassium channels KCa3.1 and Kv1.3 
and microglial activation have been shown repeatedly (Cocozza et al., 2021). 
Levels of KCa3.1 and Kv1.3 and mRNA levels of related inflammatory factors 
were increased in microglia isolated from brains of Western diet-fed mice 
(Jena et al., 2018). Additionally, Western diet-fed-derived saturated fatty acid 
can activate the microglial CD14-TLR4-MD2 complex, ultimately damaging 
microglia by inducing NF-κB signaling, which triggers neuroinflammation and 
proinflammatory cytokine secretions (Wieckowska-Gacek et al., 2021).

In summary, clinical and animal studies support relations between the 
gut microbiota and AD. While the specific underlying mechanism remains 
unknown, neuroinflammation caused by microglia may be an important 
contributor. According to current research, the classic interventions described 
above impact intestinal flora composition, and thus affect host cognitive 
behavior. Therefore, an in-depth understanding of the relations between 
intestinal flora and AD may open new methods for early AD treatment.

Other lifestyles factors linking microglia and AD
In addition to the aforementioned risk factors, AD is driven by numerous 
others, emphasizing the disease’s complex, multifactorial nature. The 
evidence supporting several of these factors is described here.

Sleep and circadian rhythmicity
Sleep plays an important role in cognition and memory. Sleep disturbance 
(SD)  increases Aβ burden, potentially triggering  cognitive decline and 
increasing AD risk (Irwin and Vitiello, 2019). Microglial activation is a key 
mediator of SD-induced imbalance in inflammatory cytokines and cognitive 
impairment (Wadhwa et al., 2017a), and inhibiting microglial activation 
with minocycline can intervene to improve cognitive performance during SD 
(Wadhwa et al., 2017b). Furthermore, microglia possess a circadian clock that 
influences inflammatory responses via robust rhythms of TNF-α, IL-1β, and 
IL-6 mRNA (Fonken et al., 2015). In addition to inflammatory factor releases, 
other microglia functions are similarly influenced by circadian rhythms. 
One circadian clock component, Rev-erbα, plays a key role in microglial 
activation and neuroinflammation (Griffin et al., 2019). The Rev-erbα agonist 
SR9011 switches microglia to a neuroprotective phenotype (Griffin et al., 
2020), decreasing phagocytic microglial capacity (Wang et al., 2020c), and 
inhibiting cellular metabolism (Wolff et al., 2020). Therefore, circadian rhythm 
disturbances may also affect microglial function by modulating the basic helix-
loop-helix ARNT like 1 (BMAL1)-REV-ERBα axis, which can lead to cognitive 
dysfunction.

Physical exercise
The neuroprotective roles of physical exercise have been confirmed in several 
studies (Chen et al., 2016). It is well known that regular physical exercise is a 
modifiable lifestyle factor that can reduce AD risk and slow its progression. 
The functions of regular physical activity include cognitive improvement 
and amelioration of Aβ deposition and tau phosphorylation (Kelly, 2018). 
Compared with aged controls without neurological disease, postmortem 
brain samples from patients with AD show higher levels of proinflammatory 
microglia and lower levels of anti-inflammatory microglia (Kohman et al., 
2013; He et al., 2017; Jiang et al., 2017). Physical exercise also increases the 
number of anti-inflammatory phenotype microglia and suppresses activation 
of proinflammatory phenotype microglia in the hippocampus (Zhang et 
al., 2019), which are regulated by increasing anti-inflammatory factors and 
suppressing the production of proinflammatory cytokines and chemokines (Lu 
et al., 2017; Mee-Inta et al., 2019). Therefore, exercise may regulate microglia 
function and induce anti-inflammatory effects. 

Smoking
Cigarette smoking is the most preventable cause of death and various 
diseases, including cardiovascular disease, lung disease, and various cancers 
(Billatos et al., 2021; Fagerberg and Barregard, 2021; Virani et al., 2021; Hecht 
and Hatsukami, 2022). Smoking not only increases the incidence of these 
diseases, it leads to neurocognitive abnormalities, significantly increasing 
symptom progression over time (Durazzo et al., 2010). Epidemiology studies 
have explored several aspects of the association between smoking and AD. 
First, the likelihood of AD in smokers is greatly increased; second, smokers 
have a lower age of AD onset compared with nonsmokers; and third, 
decreasing smoking prevalence may reduce the future AD incidence (Barnes 
and Yaffe, 2011; Henderson, 2014). To some extent, smoking harms the brain 
in ways similar to that of PM2.5 or other air pollution. Cigarette smoking 
causes brain alterations including increased oxidative stress (Durazzo et al., 
2016b), decreased hippocampal and left hippocampal volumes (Durazzo et 
al., 2013), and inhibited dentate gyrus neurogenesis (Durazzo et al., 2016b). 
In terms of pathological changes, cigarette smoking tends to be associated 
with more amyloid deposition and tau phosphorylation (Durazzo et al., 

Figure 2 ｜ Microglia as stress response sensors. 
Stress induces a series of alterations in microglial morphology, function, and 
immunophenotype through stress hormones/transmitters. These changes allow microglia 
to undergo a markedly increased proinflammatory response, leading to increased 
levels of neurotoxic cytokines and accumulating Aβ and neurofibrillary tangles. These 
combined factors may accelerate AD onset. Created with Adobe Illustrator CS6. ACTH: 
Adrenocorticotropic hormone; ADX: adrenalectomy; Aβ: amyloid-β; DAMP: danger-
associated molecular patterns; HPA: hypothalamic-pituitary-adrenal; PAMP: pathogen-
associated molecular patterns; RU486: glucocorticoid receptor GR antagonist. 

Microbiota and microglia homeostasis
Given that the gut microbiota is an essential regulator of microglial function, 
microbiota-microglia interactions may be a critical link to CNS disorders. 
Observations from GF animals (which are hand-raised in an aseptic isolator 
without microorganism exposure) indicate important contributions of the 
gut microbiota to microglial homeostasis, including global defects from 
an immature phenotype, altered steady-state conditions, and diminished 
immune responses. When Erny et al.  (2015) compared microglial 
morphology characteristics between GF and specific pathogen-free mice, 
microglia of the former had more complex morphologies, including longer 
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2016b), and lower rates of cortical glucose metabolism have been shown 
in autopsy and clinical studies (Durazzo et al., 2016a). Thus, while smoking 
is a major modifiable risk factor for AD, the underlying mechanisms are still 
being investigated. Because one possible mechanism is neuroinflammation 
resulting from microglial activation, our group explored microglia affected by 
chronic cigarette smoke (CS). Quantitatively, animal studies have shown that 
long-term chronic CS exposure can induce neuroinflammation by increasing 
microglial activation, which can be reduced following acute nicotine 
withdrawal (Adeluyi et al., 2019; Prasedya et al., 2020; Sivandzade et al., 
2020). Morphologically, CS transforms hippocampal microglia into amoeboid 
shapes, mainly characterized by a decrease in cell processes total length and 
mean branch numbers in the CA3, but not the CA1 or dentate gyrus regions 
(Dobric et al., 2022). Thus, chronic CS exposure causes active morphologic 
changes, and specifically reducing microglial numbers. In conclusion, 
understanding how smoking impacts cognition by altering microglia may aid 
developing microglial modulators as a smoking-induced AD treatment. This 
remains an area in which significant research is needed.

Caffeine
Coffee, among the most widely-consumed beverages worldwide, is correlated 
with reduced AD risk (Londzin et al., 2021). The mechanisms of caffeine in 
AD prevention and regulation include: (1) Reduced Aβ plaque production 
via decreased expressions of presenilin 1 (PS1) and β-secretase (BACE), a 
possible mechanism by which caffeine protects cognition (Arendash et al., 
2006); (2) Reduced phosphorylation levels by reducing glycogen synthase 
kinase 3 alpha dysregulation and glycogen synthase kinase 3 beta expression, 
both of which result from attenuating TNF-α-c-Jun and Akt-mTOR signaling 
(Arendash et al., 2009; Zhou and Zhang, 2021); and (3) Attenuation of 
AD-associated neuroinflammation by inhibiting  the excessive microglia 
activation and reducing BBB disruption (Madeira et al., 2017). In one in vivo 
study, daily injection of caffeine for 4 weeks significantly decreased Iba-1 
expression and microglial number in the LPS-treated mouse brain, though 
morphological changes were not significant (Badshah et al., 2019; Yang et al., 
2022). It has also been demonstrated that caffeine decreases the microglial 
proinflammatory phenotype by downregulating the levels of CD86 and iNOS 
and inhibiting TNF-α and IL-1β secretions. In contrast, caffeine upregulates the 
anti-inflammatory phenotype of microglia, elevates expressions of CD206 and 
Arg1, and promotes secretion of anti-inflammatory factors (Yang et al., 2022). 
Caffeine inhibits microglial hyperactivation, reduces microglial polarization 
to the proinflammatory phenotype, and promotes microglial polarization to 
the anti-inflammatory type (Yang et al., 2022). Furthermore, pKr-2 induces 
hippocampal neurodegeneration by stimulating TLR4 with PU.1 and c-Jun, 
serving as a proinflammatory stimulus for microglial response. Caffeine also 
inhibits hippocampal pKr-2 expression and reduces TLR4 upregulation in 
5xFAD mouse microglia, alleviating hippocampal neurodegeneration (Kim 
et al., 2023). While it is therefore reasonable to speculate that the positive 
effects of caffeine on AD are achieved via shifts in microglial phenotype, the 
specific mechanism is currently unclear.

Limitations
Some limitations to this review should be acknowledged. Due to the unique 
nature of brain diseases, the research findings summarized herein regarding 
how modern lifestyle factors such as air quality, stress, gut microbiota, sleep, 
physical exercise, smoking, and caffeine regulate microglia and AD are largely 
based on cellular or rodent model studies. However, these findings remain to 
be confirmed by epidemiological and clinical data. Several methods found to 
slow AD progression by microglia-based intervention (e.g., microglia ablation, 
microglia inhibitors, gene knockout, stem cell transplantation) also require 
further evaluation to facilitate clinical research.

Conclusions and Perspectives
Age is an independent risk factor for AD, a multifactorial disease affected by 
both modifiable environmental risk factors and genetics. Herein, we reviewed 
how modern lifestyle factors, including air quality (i.e., PM2.5), stress, the 
gut microbiota, sleep and circadian rhythms, and physical exercise, affect 
animal models and human microglia regulation in the AD context. The exact 
role and importance of microglia in the onset and development of AD is 
a current research hotspot, as is how different lifestyle factors regulate 
microglia and affect AD. Notably, these  lifestyle factors do not affect AD 
via microglia independently. For example, chronic sleep disruption affects 
the gut microbiota by altering taxonomic profiles of fecal microbiota. And 
exercise is also involved in the regulation of circadian melatonin rhythm 
and the sleep-wake cycle (Tahara and Shibata, 2018). Various environmental 
and  lifestyle  factors may thus synergistically promote AD development. 
Increased AD susceptibility can be driven by modulation of microglia through 
different lifestyles above, thus determining the true role and importance of 
microglia in AD remains an area worthy of further investigation at present.

Clinical pharmacology now used in AD treatment generally only addresses 
symptoms, rather than preventing the disease (Cai et al., 2022). The 
hypothesis that microglial activation may adversely affect disease 
progression has prompted the search for ways to deplete microglia via 
compounds and genetic models. Although various methods are available 
for microglial ablation, the use of most depletion methods, including 
the CX3CR1creERxDTRff mouse model (Bruttger et al., 2015; Rice et al., 
2017), the CD11b-HSVTK model (Grathwohl et al., 2009), and clodronate 
liposomes (Faustino et al., 2011) is prohibited for various reasons. In contrast 
to microglial depletion paradigms, CSF1R inhibitors have unique advantages 

due to their highly selective effects, noninvasive administration, and rapid/
sustained microglia elimination. CSF1R inhibitors PLX5622 and PLX3397 
eliminate almost all microglia from the 5xFAD mouse brain and prevent 
plaque formation (Spangenberg et al., 2019), concomitant with dopaminergic 
signaling rescue (Son et al., 2020). 

Blockage of microglial activation is neuroprotective in AD animal models 
(Akiyama et al., 2000). The beneficial effects of nonsteroidal anti-inflammatory 
drug treatment have been examined in multiple epidemiological and animal 
model studies (McGeer and McGeer, 2013). Numerous epidemiological 
studies have indicated that nonsteroidal anti-inflammatory drug use may 
protect against AD development, though this result is not clinically significant 
and its mechanism of action is unclear (Etminan et al., 2003; Rosenberg, 
2005; Ozben and Ozben, 2019). Minocycline, a commonly used tetracycline 
antibiotic,  is a strong inhibitor of the microglial shift to a proinflammatory 
phenotype (Kobayashi et al., 2013). As a modulator of microglial inflammatory 
responses, minocycline has also shown neuroprotective effects in an AD 
animal model (McLarnon, 2019).

As described above, genome-wide association studies have identified many 
risk factors expressed by microglia in AD. Ablation of the NLRP3 gene is 
protective in AD models. Using an AD mouse model of APP/PS1, Aβ pathology 
and Aβ-induced synaptic damage were markedly reduced in Nlrp3 knockout 
mice (APP/PS1/Nlrp3−/−) (Scheiblich et al., 2020). In addition to knockouts, 
several NLRP3 inhibitors have been described, including the sulfonylurea-
containing compound MCC950. In vivo, this compound can inhibit ATP 
hydrolysis and IL-1β release, reduce amyloid plaque burden, and improve 
cognitive behavior in AD model mice (Thawkar and Kaur, 2019). These 
findings suggest that NLRP3 gene ablation or inhibition as an AD treatment 
target, though it is too early for clinical assessment. A genetic link between 
TREM2 and AD was established in 2013; thus, selective modulation of TREM2 
may be another potential therapeutic strategy (Guerreiro et al., 2013). To 
date, several related agonist antibodies have been found to activate TREM2, 
including AL002 and AL002a/c (Cignarella et al., 2020; Wang et al., 2020b). 
However, novel TREM2-based treatments to manipulate microglial function 
currently face significant barriers to clinical application. Exciting achievements 
have been shown in stem cell-derived microglial replacement therapy in 
animal models. However, maintaining microglia in a beneficial state remains 
a challenge (Temple, 2023). Experimentally, bone marrow mesenchymal stem 
cell (MSC) transplantation can modulate microglial activation in APP/PS1 mice, 
showing both decreased inflammatory cells and increased anti-inflammatory 
cytokines, indicating alternative microglial activation. In addition, MSCs 
transplanted into APP/PS1 mice can ameliorate AD pathology and reverse 
spatial learning and memory declines (Zhang et al., 2016; Bagheri-
Mohammadi, 2021). Although experimental and preclinical work suggests 
that stem cells are microglial regulators, with considerable therapeutic 
potential in AD, major safety and ethical issues remain to be overcome.

In summary, the effects of environmental factors on AD are often synergistic, 
multifaceted, and closely associated with individual genetic susceptibility. The 
compendium of research on the mechanisms by which environmental factors 
affect AD leave no doubt that microglia, the neuroimmunological brain cells, 
play an important role. Considering the increased incidence of patients with 
sporadic AD, who have genetic polymorphisms associated with microglia, it 
is important to understand the role of microglia in AD development, toward 
strategies targeting microglia for AD treatment. In the effort to intervene 
and control environmental AD risk factors at an early stage, an in-depth 
understanding of the role of microglia could be a key to AD treatment 
breakthroughs.
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