Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (1): 49-55.doi: 10.3969/j.issn.1673-5374.2013.01.006
Previous Articles Next Articles
Received:
2012-07-01
Revised:
2012-10-10
Online:
2013-01-05
Published:
2013-01-05
Contact:
Qinwen Wang, Ph.D., Professor, Department of Physiology, Medical School, Research Center of Behavioral Science, Ningbo University, Ningbo 315211, Zhejiang Province, China, wangqinwen@nbu.edu.cn.
About author:
Fushun Li★, Master.
Supported by:
This work was supported by the National Natural Science Foundation of China, No. 81070873, 30970932; Ningbo Natural Science Foundation, No. 2011A610065, 2010A610072, 2011A610064, 2011C51006; and the Scientific Research Fund of Zhejiang Provincial Education Department, No. Y201018164.
Fushun Li, Xiaowei Chen, Feiming Wang, Shujun Xu, Lan Chang, Roger Anwyl, Qinwen Wang. Chronic pre-treatment with memantine prevents amyloid-beta protein-mediated long-term potentiation disruption[J]. Neural Regeneration Research, 2013, 8(1): 49-55.
[1] Hardy J. A hundred years of Alzheimer's disease research. Neuron. 2006;52(1):3-13.http://www.cell.com/neuron/retrieve/pii/S0896627306007239[2] Walsh DM, Klyubin I, Fadeeva JV, et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416(6880):535-539.http://www.nature.com/nature/journal/v416/n6880/full/416535a.html[3] Selkoe DJ. Soluble oligomers of the Amyloid β-protein impair synaptic plasticity and behavior. Behav Brain Res. 2008;192(1):106-113.http://www.sciencedirect.com/science/article/pii/S0166432808000831[4] Small DH, Mok SS, Bornstein JC. Alzheimer’s disease and Abeta toxicity: from top to bottom. Nat Rev Neurosci. 2001;2(8):595-598.http://www.nature.com/nrn/journal/v2/n8/full/nrn0801_595a.html[5] Cleary JP, Walsh DM, Hofmeister JJ, et al. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci. 2005;8(1):79-84.http://www.nature.com/neuro/journal/v8/n1/full/nn1372.html[6] Wang Q, Walsh DM, Rowan MJ, et al. Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. J Neurosci. 2004;24(13):3370-3378.http://www.jneurosci.org/content/24/13/3370.long[7] Hock C, Konietzko U, Streffer JR, et al. Antibodies against beta-amyloid slow cognitive decline in Alzheimer's disease. Neuron. 2003;38(4):547-554.http://www.cell.com/neuron/retrieve/pii/S0896627303002940[8] Klyubin I, Walsh DM, Lemere CA, et al. Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo. Nat Med. 2005;11(5): 556-561.http://www.nature.com/nm/journal/v11/n5/full/nm1234.html[9] Schenk DB, Seubert P, Grundman M, et al. Abeta immunotherapy: lessons learned for potential treatment of Alzheimer's disease. Neurodegener Dis. 2005;2(5): 255-260.http://www.ncbi.nlm.nih.gov/pubmed?term=Abeta%20immunotherapy%3A%20lessons%20learned%20for%20potential%20treatment%20of%20Alzheimer's%20disease[10] Lipton SA. Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like Memantine in the treatment of acute and chronic neurologic insults. NeuroRx. 2004;1(1):101-110.http://link.springer.com/article/10.1602%2Fneurorx.1.1.101[11] Seow D, Gauthier S. Pharmacotherapy of Alzheimer disease. Can J Psychiatry. 2007;52(10):620-629. http://www.ncbi.nlm.nih.gov/pubmed/18020110[12] Lipton SA. Pathologically activated therapeutics for neuroprotection. Nat Rev Neurosci. 2007;8(10):803-808.http://www.nature.com/nrn/journal/v8/n10/full/nrn2229.html[13] Parsons CG, Stöffler A, Danysz W. Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system-too little activation is bad, too much is even worse. Neuropharmacology. 2007;53(6):699-723.http://www.sciencedirect.com/science/article/pii/S0028390807002298[14] Raina P, Santaguida P, Ismaila A, et al. Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. Ann Intern Med. 2008;148(5):379-397.http://annals.org/article.aspx?articleid=739930[15] Miguel-Hidalgo JJ, Alvarez XA, Cacabelos R, et al. Neuroprotection by memantine against neurodegeneration induced by beta-amyloid(1-40). Brain Res. 2002;958(1):210-221.http://www.sciencedirect.com/science/article/pii/S0006899302037319[16] Alley GM, Bailey JA, Chen D, et al. Memantine lowers amyloid-beta peptide levels in neuronal cultures and in APP/PS1 transgenic mice. J Neurosci Res. 2010;88(1): 143-154. http://dx.doi.org/10.1002/jnr.22172[17] Chipana C, Torres I, Camarasa J, et al. Memantine protects against amphetamine derivatives-induced neurotoxic damage in rodents. Neuropharmacology. 2008;54(8):1254-1263.http://www.sciencedirect.com/science/article/pii/S002839080800097X[18] Babu CS, Ramanathan M. Pre-ischemic treatment with memantine reversed the neurochemical and behavioural parameters but not energy metabolites in middle cerebral artery occluded rats. Pharmacol Biochem Behav. 2009; 92(3):424-432.http://www.sciencedirect.com/science/article/pii/S0091305709000252[19] Hare WA, Wheeler L. Experimental glutamatergic excitotoxicity in rabbit retinal ganglion cells: block by memantine. Invest Ophthalmol Vis Sci. 2009;50(6): 2940-2948. http://www.iovs.org/content/50/6/2940.long[20] Barber TA, Haggarty MK. Memantine ameliorates scopolamine-induced amnesia in chicks trained on taste-avoidance learning. Neurobiol Learn Mem. 2010;93(4):540-545.http://www.sciencedirect.com/science/article/pii/S1074742710000304[21] Barnes CA, Danysz W, Parsons CG.. Effects of the uncompetitive NMDA receptor antagonist memantine on hippocampal long-term potentiation, short-term exploratory modulation and spatial memory in awake, freely moving rats. Eur J Neurosci. 1996;8(3):565-571.http://www.ncbi.nlm.nih.gov/pubmed?term=Effects%20of%20the%20uncompetitive%20NMDA%20receptor%20antagonist%20memantine%20on%20hippocampal%20long-term%20potentiation%2C%20short-term%20exploratory%20modulation%20and%20spatial%20memory%20in%20awake%2C%20freely%20moving%20rats[22] Zajaczkowski W, Frankiewicz T, Parsons CG, et al. Uncompetitive NMDA receptor antagonists attenuate NMDA-induced impairment of passive avoidance learning and LTP. Neuropharmacology. 1997;36(7):961-971.http://www.sciencedirect.com/science/article/pii/S0028390897000701[23] Klyubin I, Wang Q, Reed MN, et al. Protection against Aβ-mediated apid disruption of synaptic plasticity and memory by memantine. Neurobiol Aging. 2009;32(4): 614-623.http://www.neurobiologyofaging.org/article/S0197-4580(09)00120-1/abstract[24] Kos T, Popik P. A comparison of the predictive therapeutic and undesired side-effects of the NMDA receptor antagonist, memantine, in mice. Behav Pharmacol. 2005; 16(3):155-161.http://www.ncbi.nlm.nih.gov/pubmed?term=A%20comparison%20of%20the%20predictive%20therapeutic%20and%20undesired%20side-effects%20of%20the%20NMDA%20receptor%20antagonist%2C%20memantine%2C%20in%20mice[25] Creeley C, Wozniak DF, Labruyere J, et al. Low doses of memantine disrupt memory in adult rats. J Neurosci. 2006; 26(15):3923-2932.http://www.jneurosci.org/cgi/pmidlookup?view=long&pmid=16611808[26] Minkeviciene R, Banerjee P, Tanila H. Memantine improves spatial learning in a transgenic mouse model of Alzheimer’s disease. J Pharmacol Exp Ther. 2004;311(2): 677-682. http://jpet.aspetjournals.org/content/311/2/677.long[27] Minkeviciene R, Banerjee P, Tanila H. Cognition- enhancing and anxiolytic effects of memantine. Neuropharmacology. 2008;54(7):1079-1085.http://www.sciencedirect.com/science/article/pii/S002839080800052X[28] Peskind ER, Potkin SG, Pomara N, et al. Memantine treatment in mild to moderate Alzheimer disease: a 24-week randomized, controlled trial. Am J Geriatr Psychiatry. 2006;14(8):704-715.http://linkinghub.elsevier.com/retrieve/pii/14/8/704[29] Schulz JB, Rainer M, Klünemann HH, et al. Sustained effects of once-daily memantine treatment on cognition and functional communication skills in patients with moderate to severe Alzheimer's disease: results of a 16-week open-label trial. J Alzheimers Dis. 2011;25(3): 463-475.http://iospress.metapress.com/content/86ug68625k136376/?genre=article&issn=1387-2877&volume=25&issue=3&spage=463[30] Pietá Dias C, Martins de Lima MN, Presti-Torres J, et al. Memantine reduces oxidative damage and enhances long-term recognition memory in aged rats. Neuroscience. 2007;146(4):1719-1725.http://www.sciencedirect.com/science/article/pii/S0306452207003387[31] Quan MN, Zhang N, Wang YY, et al. Possible antidepressant effects and mechanisms of memantine in behaviors and synaptic plasticity of a depression rat model. Neuroscience. 2011;182:88-97.http://www.sciencedirect.com/science/article/pii/S0306452211002843[32] Zorumski CF, Izumi Y. Modulation of LTP induction by NMDA receptor activation and nitric oxide release. Prog Brain Res. 1998;118:173-182.http://www.ncbi.nlm.nih.gov/pubmed?term=Modulation%20of%20LTP%20induction%20by%20NMDA%20receptor%20activation%20and%20nitric%20oxide%20release[33] Witt A, Macdonald N, Kirkpatrick P. Memantine hydrochloride. Nat Rev Drug Discov. 2004;3(2):109-110.http://www.nature.com/nrd/journal/v3/n2/full/nrd1311.html[34] Zoladz PR, Campbell AM, Park CR, et al. Enhancement of long-term spatial memory in adult rats by the noncompetitive NMDA-receptor antagonists, memantine and neramexane. Pharmacol Biochem Behav. 2006;85(2): 298-306.http://www.sciencedirect.com/science/article/pii/S0091305706002826[35] Lockrow J, Boger H, Bimonte-Nelson H, et al. Effects of long-term memantine on memory and neuropathology in Ts65Dn mice, a model for Down syndrome. Behav Brain Res. 2011;221(2):610-622.http://www.sciencedirect.com/science/article/pii/S0166432810002226[36] Arif M, Chikuma T, Ahmed MM, et al. Effects of memantine on soluble Αβ25-35-induced changes in peptidergic and glial cells in Alzheimer's disease model rat brain regions. Neuroscience. 2009;164(3):1199-1209.http://www.sciencedirect.com/science/article/pii/S0306452209014237[37] Kotermanski SE, Johnson JW. Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. J Neurosci. 2009;29(9):2774-2779.http://www.jneurosci.org/content/29/9/2774.long[38] Okamoto S, Pouladi MA, Talantova M, et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med. 2009;15(12):1407-1413.http://www.nature.com/nm/journal/v15/n12/full/nm.2056.html[39] Xia P, Chen HS, Zhang D, et al. Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J Neurosci. 2010; 30(33):11246-11250. http://www.jneurosci.org/content/30/33/11246.long[40] Lu CW, Lin TY, Wang SJ. Memantine depresses glutamate release through inhibition of voltage-dependent Ca2+ entry and protein kinase C in rat cerebral cortex nerve terminals: An NMDA receptor-independent mechanism. Neurochem Int. 2010;57(2):168-176.http://www.sciencedirect.com/science/article/pii/S0197018610001713[41] Anwyl R. Metabotropic glutamate receptor-dependent long-term potentiation. Neuropharmacology. 2009;56(4): 735-740.http://www.ncbi.nlm.nih.gov/pubmed/19705571[42] The Ministry of Science and Technology of the People’s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30.http://www.most.cn/fggw/zfwj/zfwj2006/200609/t20060930_54389.htm |
[1] | Gao-Jing Xu, Qun Zhang, Si-Yue Li, Yi-Tong Zhu, Ke-Wei Yu, Chuan-Jie Wang, Hong-Yu Xie, Yi Wu. Environmental enrichment combined with fasudil treatment inhibits neuronal death in the hippocampal CA1 region and ameliorates memory deficits [J]. Neural Regeneration Research, 2021, 16(8): 1460-1466. |
[2] | Yu-Song Yuan, Fei Yu, Ya-Jun Zhang, Su-Ping Niu, Hai-Lin Xu, Yu-Hui Kou. Changes in proteins related to early nerve repair in a rat model of sciatic nerve injury [J]. Neural Regeneration Research, 2021, 16(8): 1622-1627. |
[3] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[4] | Qiang Gao, Aaron Leung, Yong-Hong Yang, Benson Wui-Man Lau, Qian Wang, Ling-Yi Liao, Yun-Juan Xie, Cheng-Qi He. Extremely low frequency electromagnetic fields promote cognitive function and hippocampal neurogenesis of rats with cerebral ischemia [J]. Neural Regeneration Research, 2021, 16(7): 1252-1257. |
[5] | Dae Young Yoo, Hyo Young Jung, Woosuk Kim, Kyu Ri Hahn, Hyun Jung Kwon, Sung Min Nam, Jin Young Chung, Yeo Sung Yoon, Dae Won Kim, In Koo Hwang. Entacapone promotes hippocampal neurogenesis in mice [J]. Neural Regeneration Research, 2021, 16(6): 1005-1010. |
[6] | Hui-Ling Wang, Fei-Lai Liu, Rui-Qing Li, Ming-Yue Wan, Jie-Ying Li, Jing Shi, Ming-Li Wu, Jun-Hua Chen, Wei-Juan Sun, Hong-Xia Feng, Wei Zhao, Jin Huang, Ren-Chao Liu, Wen-Xue Hao, Xiao-Dong Feng. Electroacupuncture improves learning and memory functions in a rat cerebral ischemia/reperfusion injury model through PI3K/Akt signaling pathway activation [J]. Neural Regeneration Research, 2021, 16(6): 1011-1016. |
[7] | Ning Liu, Liang Zeng, Yi-Ming Zhang, Wang Pan, Hong Lai. Astaxanthin alleviates pathological brain aging through the upregulation of hippocampal synaptic proteins [J]. Neural Regeneration Research, 2021, 16(6): 1062-1067. |
[8] | Yu-Xuan Wu, Hao Ma, Jian-Lan Wang, Wei Qu. Production of chitosan scaffolds by lyophilization or electrospinning: which is better for peripheral nerve regeneration? [J]. Neural Regeneration Research, 2021, 16(6): 1093-1098. |
[9] | Raheel Khan, Don Kulasiri, Sandhya Samarasinghe. Functional repertoire of protein kinases and phosphatases in synaptic plasticity and associated neurological disorders [J]. Neural Regeneration Research, 2021, 16(6): 1150-1157. |
[10] | Jian-Zhu Bo, Ling Xue, Shuang Li, Jing-Wen Yin, Zheng-Yao Li, Xi Wang, Jun-Feng Wang, Yan-Shu Zhang. D-serine reduces memory impairment and neuronal damage induced by chronic lead exposure [J]. Neural Regeneration Research, 2021, 16(5): 836-841. |
[11] | Su-Ping Niu, Ya-Jun Zhang, Na Han, Xiao-Feng Yin, Dian-Ying Zhang, Yu-Hui Kou . Identification of four differentially expressed genes associated with acute and chronic spinal cord injury based on bioinformatics data [J]. Neural Regeneration Research, 2021, 16(5): 865-870. |
[12] | Ming-Yu Shi, Cheng-Cheng Ma, Fang-Fang Chen, Xiao-Yu Zhou, Xue Li, Chuan-Xi Tang, Lin Zhang, Dian-Shuai Gao. Possible role of glial cell line-derived neurotrophic factor for predicting cognitive impairment in Parkinson’s disease: a case-control study [J]. Neural Regeneration Research, 2021, 16(5): 885-892. |
[13] | Mariam Rizk, Justin Vu, Zhi Zhang. Impact of pediatric traumatic brain injury on hippocampal neurogenesis [J]. Neural Regeneration Research, 2021, 16(5): 926-933. |
[14] | Bing-Qian Cao, Feng Tan, Jie Zhan, Peng-Hui Lai. Mechanism underlying treatment of ischemic stroke using acupuncture: transmission and regulation [J]. Neural Regeneration Research, 2021, 16(5): 944-954. |
[15] | Magdalini Tsintou, Kyriakos Dalamagkas, Tara L. Moore, Yogesh Rathi, Marek Kubicki, Douglas L. Rosene, Nikos Makris. The use of hydrogel-delivered extracellular vesicles in recovery of motor function in stroke: a testable experimental hypothesis for clinical translation including behavioral and neuroimaging assessment approaches [J]. Neural Regeneration Research, 2021, 16(4): 605-613. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||