Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (4): 293-300.doi: 10.3969/j.issn.1673-5374.2013.04.001
Xingrong Yan1, Yanhong Yang2, Wei Liu1, Wenxin Geng1, Huichong Du1, Jihong Cui1, Xin Xie1, Jinlian Hua3, Shumin Yu4, Liwen Li1, Fulin Chen1
Received:
2012-10-13
Revised:
2012-12-10
Online:
2013-02-05
Published:
2013-02-05
Contact:
Xin Xie, Ph.D., Lecturer, College of Life Sciences, Northwest University, Xi’an 710069, Shaanxi Province, China, xiexhd@126.com. Fulin Chen, Ph.D., Professor, College of Life Sciences, Northwest University, Xi’an 710069, Shaanxi Province, China, tengda111111@ 163.com
About author:
Xingrong Yan☆, Ph.D., Master’s supervisor.
Xingrong Yan and Yanhong Yang contribute equally to this work
Supported by:
This work was supported by the National Natural Science Foundation of China, No. 30900155 and 81070496; the Research Foundation of Education Bureau of Shaanxi Province, China, No. 09JK785; Foundation of Interdisciplinary for Postgraduates from Northwest University, No. 08YJC22 and the Key Laboratory Funding of Northwestern University, Shaanxi Province in China
Xingrong Yan, Yanhong Yang, Wei Liu, Wenxin Geng, Huichong Du, Jihong Cui, Xin Xie, Jinlian Hua, Shumin Yu, Liwen Li, Fulin Chen. Differentiation of neuron-like cells from mouse parthenogenetic embryonic stem cells[J]. Neural Regeneration Research, 2013, 8(4): 293-300.
[1] Alvarez CV, Garcia-Lavandeira M, Garcia-Rendueles ME, et al. Defining stem cell types: understanding the therapeutic potential of ESCs, ASCs, and iPS cells. J Mol Endocrinol. 2012;49(2):R89-111.[2] Sills ES, Takeuchi T, Tanaka N, et al. Identification and isolation of embryonic stem cells in reproductive endocrinology: theoretical protocols for conservation of human embryos derived from in vitro fertilization. Theor Biol Med Model. 2005;2(25):1-8.[3] Lin G, OuYang Q, Zhou X, et al. A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure. Cell Res. 2007;17(12):999-1007.[4] Okamoto S, Takahashi M. Induction of Retinal Pigment Epithelial Cells from Monkey Invest. Invest Ophthalmol Vis Sci. 2011;52(12):8785-8790.[5] Jiang J, Ding G, Lin J, et al. Different developmental potential of pluripotent stem cells generated by different reprogramming strategies. J Mol Cell Biol. 2011;3(3): 197-199.[6] Yang X, Smith SL, Tian XC, et al. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet. 2007;39(3):295-302.[7] Rideout WM 3rd, Hochedlinger K, Kyba M, et al. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell. 2002;109(1): 17-27.[8] Robertson JA. Embryo stem cell research: ten years of controversy. J Law Med Ethics. 2010;38(2):191-203.[9] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676.[10] Zou J, Mali P, Huang X, et al. Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood. 2011;118(17): 4599-4608.[11] Alipio Z, Liao W, Roemer EJ, et al. Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic β-like cells. Proc Natl Acad Sci U S A. 2010;107(30): 13426-13431.[12] Mou CL, Chen LY. Battle for pluripotency: Derivation of induced pluripotent stem cells. Recent Pat Regen Med. 2011;1:123-130.[13] Zeitouni S, Krause U, Clough BH, et al. Human mesenchymal stem cell-derived matrices for enhanced osteoregeneration. Sci Transl Med. 2012;4(132): 132-155.[14] Van Keymeulen A, Blanpain C. Tracing epithelial stem cells during development, homeostasis, and repair. J Cell Biol. 2012;197(5):575-584.[15] Rode I, Boehm T. Regenerative capacity of adult cortical thymic epithelial cells. Proc Natl Acad Sci U S A. 2012; 109(9):3463-3468.[16] Kaufman MH, Robertson EJ, Handyside AH, et al. Establishment of pluripotential cell lines from haploid mouse embryos. J Embryol Exp Morphol. 1983;73: 249-261.[17] Kim K, Lerou P, Yabuuchi A, et al. Histocompatible embryonic stem cells by parthenogenesis. Science. 2007;315(5811):482-486.[18] Revazova ES, Turovets NA, Kochetkova OD, et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells. 2007; 9:432-449.[19] Bibel M, Richter J, Schrenk K, et al. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat Neurosci. 2004;7(9):1003-1009.[20] Stavridis MP, Smith AG. Neural differentiation of mouse embryonic stem cells. Biochem Soc Trans. 2003;31(Pt 1): 45-49.[21] Yu SM, Yan XR, Chen DM, et al. Isolation and characterization of parthenogenetic embryonic stem (pES) cells containing genetic background of the Kunming mouse strain. Asian-Aust J Anim Sci. 2011;24(1):37-44. [22] Yan X, Yu S, Lei A, et al. The four reprogramming factors and embryonic development in mice. Cell Reprogram. 2010;12(5):565-570.[23] Gong SP, Kim H, Lee EJ, et al. Change in gene expression of mouse embryonic stem cells derived from parthenogenetic activation. Hum Reprod. 2009;24(4): 805-814.[24] Jäderstad J, Jäderstad LM, Li J, et al. Communication via gap junctions underlies early functional and beneficial interactions between grafted neural stem cells and the host. Proc Natl Acad Sci U S A. 2010;107(11):5184-5189.[25] Cao Q, He Q, Wang Y, et al. Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury. J Neurosci. 2010;30(8): 2989-3001.[26] Zhou J, Tian GP, Wang J, et al. In vitro differentiation of adipose-derived stem cells and bone marrow-derived stromal stem cells into neuronal-like cells. Neural Regen Res. 2011;6(19):1467-1472.[27] Pevny LH, Sockanathan S, Placzek M, et al. A role for SOX1 in neural determination. Development. 1998;125: 1967-1978.[28] Park D, Xiang AP, Mao FF, et al. Nestin is required for the proper self-renewal of neural stem cells. Stem Cells. 2101;28(12):2162-2171.[29] Jia H, Tao H, Feng R, et al. Pax6 regulates the epidermal growth factor-responsive neural stem cells of the subventricular zone. Neuroreport. 2011;22(9):448-452.[30] Corti S, Nizzardo M, Nardini M, et al. Embryonic stem cell-derived neural stem cells improve spinal muscular atrophy phenotype in mice. Brain. 2010;133(Pt 2): 465-481.[31] Elkouris M, Balaskas N, Poulou M, et al. Sox1 maintains the undifferentiated state of cortical neural progenitor cells via the suppression of Prox1-mediated cell cycle exit and neurogenesis. Stem Cells. 2011;29(1):89-98.[32] Jin Z, Liu L, Bian W, et al. Different transcription factors regulate nestin gene expression during P19 cell neural differentiation and central nervous system development. J Biol Chem. 2009;284(12):8160-8173.[33] Suzuki S, Namiki J, Shibata S, et al. The neural stem/progenitor cell marker nestin is expressed in proliferative endothelial cells, but not in mature vasculature. J Histochem Cytochem. 2010;58(8):721-730.[34] Zhang X, Huang CT, Chen J, et al. Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell. 2010;7(1):90-100.[35] Gao J, Wang J, Wang Y, et al. Regulation of Pax6 by CTCF during induction of mouse ES cell differentiation. PLoS One. 2011;6(6):e20954.[36] Sansom SN, Griffiths DS, Faedo A, et al. The level of the transcription factor pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genet. 2009;5(6):e1000511.[37] Tan KR, Yvon C, Turiault M, et al. GABA neurons of the VTA drive conditioned place aversion. Neuron. 2012; 73(6):1173-1183.[38] Inoue T, Hatayama M, Tohmonda T, et al. Mouse Zic5 deficiency results in neural tube defects and hypoplasia of cephalic neural crest derivatives. Dev Biol. 2004;270(1): 146-162.[39] National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th edition. Washington (DC): National Academies Press (US). 2011.[40] Luo C, Zuñiga J, Edison E, et al. Superovulation strategies for 6 commonly used mouse strains. J Am Assoc Lab Anim Sci. 2011;50(4):471-478. [41] González S, Ibáñez E, Santaló J. Establishment of mouse embryonic stem cells from isolated blastomeres and whole embryos using three derivation methods. J Assist Reprod Genet. 2010;27(12):671-682.[42] Nagy A, Gertsenstein M, Vintersten K, et al. Karyotyping Mouse Cells. CSH Protoc. 2008;3(5):1-3.[43] Cook MS, Munger SC, Nadeau JH, et al. Regulation of male germ cell cycle arrest and differentiation by DND1 is modulated by genetic background. Development. 2011; 138(1):23-32. |
[1] | Yu Li, Ping-Ping Shen, Bin Wang. Induced pluripotent stem cell technology for spinal cord injury: a promising alternative therapy [J]. Neural Regeneration Research, 2021, 16(8): 1500-1509. |
[2] | Sara Saffari, Tiam M. Saffari, Dietmar J. O. Ulrich, Steven E. R. Hovius, Alexander Y. Shin. The interaction of stem cells and vascularity in peripheral nerve regeneration [J]. Neural Regeneration Research, 2021, 16(8): 1510-1517. |
[3] | Xue-Mei Zhang, Yang Sun, Ying-Lian Zhou, Zhuo-Min Jiao, Dan Yang, Yuan-Jiao Ouyang, Mei-Yu Yu, Jin-Yue Li, Wei Li, Duo Wang, Hui Yue, Jin Fu. Therapeutic effects of dental pulp stem cells on vascular dementia in rat models [J]. Neural Regeneration Research, 2021, 16(8): 1645-1651. |
[4] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[5] | Min Wang, Juan-Juan Tang, Lin-Xiao Wang, Jun Yu, Li Zhang, Chen Qiao. Hydrogen sulfide enhances adult neurogenesis in a mouse model of Parkinson’s disease [J]. Neural Regeneration Research, 2021, 16(7): 1353-1358. |
[6] | Jian Zhang, Ren-Jie Wang, Miao Chen, Xiao-Yin Liu, Ke Ma, Hui-You Xu, Wu-Sheng Deng, Yi-Chao Ye, Wei-Xin Li, Xu-Yi Chen, Hong-Tao Sun. Collagen/heparan sulfate porous scaffolds loaded with neural stem cells improve neurological function in a rat model of traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(6): 1068-1077. |
[7] | Yuan Liu, Richard K. Lee. Cell transplantation to replace retinal ganglion cells faces challenges – the Switchboard Dilemma [J]. Neural Regeneration Research, 2021, 16(6): 1138-1141. |
[8] | Natalia E. Krzesniak, Anna Sarnowska, Anna Figiel-Dabrowska, Katarzyna Osiak, Krystyna Domanska-Janik, Bartłomiej H. Noszczyk. Secondary release of the peripheral nerve with autologous fat derivates benefits for functional and sensory recovery [J]. Neural Regeneration Research, 2021, 16(5): 856-864. |
[9] | Xue-Mei Zhang, Yuan-Jiao Ouyang, Bing-Qian Yu, Wei Li, Mei-Yu Yu, Jin-Yue Li, Zhuo-Min Jiao, Dan Yang, Na Li, Ying Shi, Yun-Yun Xu, Zhi-Jun He, Duo Wang, Hui Yue, Jin Fu. Therapeutic potential of dental pulp stem cell transplantation in a rat model of Alzheimer’s disease [J]. Neural Regeneration Research, 2021, 16(5): 893-898. |
[10] | Mariam Rizk, Justin Vu, Zhi Zhang. Impact of pediatric traumatic brain injury on hippocampal neurogenesis [J]. Neural Regeneration Research, 2021, 16(5): 926-933. |
[11] | Magdalini Tsintou, Kyriakos Dalamagkas, Tara L. Moore, Yogesh Rathi, Marek Kubicki, Douglas L. Rosene, Nikos Makris. The use of hydrogel-delivered extracellular vesicles in recovery of motor function in stroke: a testable experimental hypothesis for clinical translation including behavioral and neuroimaging assessment approaches [J]. Neural Regeneration Research, 2021, 16(4): 605-613. |
[12] | Lindsey H. Forbes, Melissa R. Andrews. Advances in human stem cell therapies: pre-clinical studies and the outlook for central nervous system regeneration [J]. Neural Regeneration Research, 2021, 16(4): 614-617. |
[13] | Zhi-Hai Ju, Xuan Liang, Yao-Yao Ren, Luo-Wa Shu, Yan-Hong Yan, Xu Cui. Neurons derived from human-induced pluripotent stem cells express mu and kappa opioid receptors [J]. Neural Regeneration Research, 2021, 16(4): 653-658. |
[14] | Chao Han, Ya-Jun Wang, Ya-Chen Wang, Xin Guan, Liang Wang, Li-Ming Shen, Wei Zou, Jing Liu. Caveolin-1 downregulation promotes the dopaminergic neuron-like differentiation of human adipose-derived mesenchymal stem cells [J]. Neural Regeneration Research, 2021, 16(4): 714-720. |
[15] | Xu-Chang Hu, Yu-Bao Lu, Yong-Na Yang, Xue-Wen Kang, Yong-Gang Wang, Bing Ma, Shuai Xing. Progress in clinical trials of cell transplantation for the treatment of spinal cord injury: how many questions remain unanswered? [J]. Neural Regeneration Research, 2021, 16(3): 405-413. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||