Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (4): 376-382.doi: 10.3969/j.issn.1673-5374.2013.04.010
Previous Articles Next Articles
Jintang Wang1, Ling Yin2, Zheng Chen1
Received:
2012-07-30
Revised:
2012-10-12
Online:
2013-02-05
Published:
2013-02-05
Contact:
Zheng Chen, Master, Chief physician, Institute for Geriatric Clinic and Rehabilitation, Beijing Geriatric Hospital, Beijing 100095, China, paul_c99@ sina.com
About author:
Jintang Wang☆, M.D., Associate investigator.
Jintang Wang and Ling Yin contributed equally to this work.
Supported by:
This work was supported by a grant from the National Science and Technology Infrastructure Platform, Ministry of Science and Technology, No. 2005DKA32400
Jintang Wang, Ling Yin, Zheng Chen. Neuroprotective role of fibronectin in neuron-glial extrasynaptic transmission[J]. Neural Regeneration Research, 2013, 8(4): 376-382.
[1] Rice ME, Patel JC, Cragg SJ. Dopamine release in the basal ganglia. Neuroscience. 2011;198:112-137.[2] Lin CY, Lee YS, Lin VW, et al. Fibronectin inhibits chronic pain development after spinal cord injury. J Neurotrauma. 2012;29(3):589-599.[3] Araque A. Astrocytes process synaptic information. Neuron Glia Biol. 2008;4(1):3-10.[4] Johnstone S, Isakson B, Locke D. Biological and biophysical properties of vascular connexin channels. Int Rev Cell Mol Biol. 2009;278:69-118.[5] Syková E, Mazel T, Simonová Z. Diffusion constraints and neuron-glia interaction during aging. Exp Gerontol. 1998; 33(7-8):837-851.[6] Syková E. Glial diffusion barriers during aging and pathological states. Prog Brain Res. 2001;132:339-363.[7] Agnati LF, Zoli M, Strömberg I, et al. Intercellular communication in the brain: wiring versus volume transmission. Neuroscience. 1995;69(3):711-726.[8] Wierzbicka-Patynowski I, Mao Y, Schwarzbauer JE. Analysis of fibronectin matrix assembly. Curr Protoc Cell Biol. 2004;Chapter 10:Unit 10.12.[9] Zhang GN, Yang YS. Biologic features and current research status of cellular fibronectin. Shiyong Yiyuan Linchuang Zazhi. 2007;4(6):104-105.[10] Lohr C, Thyssen A, Hirnet D. Extrasynaptic neuron-glia communication: The how and why. Commun Integr Biol. 2011;4(1):109-111.[11] Tsuda M, Toyomitsu E, Komatsu T, et al. Fibronectin/ integrin system is involved in P2X(4) receptor upregulation in the spinal cord and neuropathic pain after nerve injury. Glia. 2008; 56(5):579-585.[12] akagi J, Strokovich K, Springer TA, et al. Structure of integrin alpha5beta1 in complex with fibronectin. EMBO J. 2003;22(18):4607-4615.[13] Rieske P, Augelli BJ, Stawski R, et al. A population of human brain cells expressing phenotypic markers of more than one lineage can be induced in vitro to differentiate into mesenchymal cells. Exp Cell Res. 2009;315(3):462-473.[14] Moriya K, Sakai K, Yan MH, et al. Fibronectin is essential for survival but is dispensable for proliferation of hepatocytes in acute liver injury in mice. Hepatology. 2012;56(1):311-321.[15] Guidolin D, Fuxe K, Neri G, et al. On the role of receptor- receptor interactions and volume transmission in learning and memory. Brain Res Rev. 2007;55(1):119-133.[16] Edderkaoui M, Hong P, Lee JK, et al. Insulin-like growth factor-I receptor mediates the prosurvival effect of fibronectin. J Biol Chem. 2007;282(37):26646-26655.[17] Goel HL, Breen M, Zhang J, et al. beta1A integrin expression is required for type 1 insulin-like growth factor receptor mitogenic and transforming activities and localization to focal contacts. Cancer Res. 2005;65(15): 6692-6700.[18] Wang J, Milner R. Fibronectin promotes brain capillary endothelial cell survival and proliferation through alpha5beta1 and alphavbeta3 integrins via MAP kinase signalling. J Neurochem. 2006;96(1):148-159.[19] Kao CL, Lin HT, Chen YW, et al. Fibronectin suppresses lipopolysaccharide-induced liver damage and promotes the cytoprotection abilities of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells. Transplant Proc. 2007;39(10):3444-3445.[20] Neiiendam JL, Køhler LB, Christensen C, et al. An NCAM-derived FGF-receptor agonist, the FGL-peptide, induces neurite outgrowth and neuronal survival in primary rat neurons. J Neurochem. 2004;91(4):920-935.[21] Hansen SM, Køhler LB, Li S, et al. NCAM-derived peptides function as agonists for the fibroblast growth factor receptor. J Neurochem. 2008;106(5):2030-2041.[22] Duan WM, Zhao LR, Westerman M, et al. Enhancement of nigral graft survival in rat brain with the systemic administration of synthetic fibronectin peptide V. Neuroscience. 2000;100(3):521-530.[23] Tsuda M, Toyomitsu E, Kometani M, et al. Mechanisms underlying fibronectin-induced up-regulation of P2X4R expression in microglia: distinct roles of PI3K-Akt and MEK-ERK signalling pathways. J Cell Mol Med. 2009; 13(9B):3251-3259.[24] Summers L, Kielty C, Pinteaux E. Adhesion to fibronectin regulates interleukin-1 beta expression in microglial cells. Mol Cell Neurosci. 2009;41(2):148-155.[25] Tate CC, García AJ, LaPlaca MC. Plasma fibronectin is neuroprotective following traumatic brain injury. Exp Neurol. 2007;207(1):13-22.[26] King VR, Phillips JB, Hunt-Grubbe H, et al. Characterization of non-neuronal elements within fibronectin mats implanted into the damaged adult rat spinal cord. Biomaterials. 2006;27(3):485-496. [27] Hu J, Deng L, Wang X, et al. Effects of extracellular matrix molecules on the growth properties of oligodendrocyte progenitor cells in vitro. J Neurosci Res. 2009;87(13): 2854-2862.[28] King VR, Alovskaya A, Wei DY, et al. The use of injectable forms of fibrin and fibronectin to support axonal ingrowth after spinal cord injury. Biomaterials. 2010;31(15): 4447-4456.[29] Tate MC, Shear DA, Hoffman SW, et al. Fibronectin promotes survival and migration of primary neural stem cells transplanted into the traumatically injured mouse brain. Cell Transplant. 2002;11(3):283-295.[30] Cao JP, Yu JK, Li C, et al. Integrin beta1 is involved in the signaling of glial cell line-derived neurotrophic factor. J Comp Neurol. 2008;509(2):203-210.[31] Chao CC, Ma YL, Chu KY, et al. Integrin alphav and NCAM mediate the effects of GDNF on DA neuron survival, outgrowth, DA turnover and motor activity in rats. Neurobiol Aging. 2003;24(1):105-116.[32] King VR, McBride A, Priestley JV. Immunohistochemical expression of the alpha5 integrin subunit in the normal adult rat central nervous system. J Neurocytol. 2001; 30(3):243-252.[33] Li JH, Mu DZ. Roles of integrins in the central nervous system. Guoji Erke Zazhi. 2008;35(1):38-40.[34] Milner R, Crocker SJ, Hung S, et al. Fibronectin- and vitronectin-induced microglial activation and matrix metalloproteinase-9 expression is mediated by integrins alpha5beta1 and alphavbeta5. J Immunol. 2007;178(12): 8158-8167.[35] Wang JY, Grabacka M, Marcinkiewicz C, et al. Involvement of alpha1beta1 integrin in insulin-like growth factor-1-mediated protection of PC12 neuronal processes from tumor necrosis factor-alpha-induced injury. J Neurosci Res. 2006;83(1):7-18.[36] Clemmons DR, Maile LA. Interaction between insulin-like growth factor-I receptor and alphaVbeta3 integrin linked signaling pathways: cellular responses to changes in multiple signaling inputs. Mol Endocrinol. 2005;19(1):1-11.[37] Legate KR, Wickström SA, Fässler R. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev. 2009;23(4):397-418.[38] Sperlágh B, Vizi ES. The role of extracellular adenosine in chemical neurotransmission in the hippocampus and Basal Ganglia: pharmacological and clinical aspects. Curr Top Med Chem. 2011;11(8):1034-1046. [39] Tonge DA, de Burgh HT, Docherty R, et al. Fibronectin supports neurite outgrowth and axonal regeneration of adult brain neurons in vitro. Brain Res. 2012;1453:8-16.[40] Vargová L, Syková E. Extracellular space diffusion and extrasynaptic transmission. Physiol Res. 2008;57 Suppl 3:S89-99.[41] Ridet I, Privat A. Volume transmission. Trends Neurosci. 2000;23:58-59.[42] Vargova L, Homola A, Cicanic M, et al. The diffusion parameters of the extracellular space are altered in focal cortical dysplasias. Neurosci Lett. 2011;499:19-23.[43] Nowak P, Szczerbak G, Dabrowska J, et al. Molecular mechanisms of levodopa action in animal models of Parkinson’s disease. Neurol Neurochir Pol. 2006;40:517-525.[44] Schneider JS, Rothblat DS, DiStefano L. Volume transmission of dopamine over large distances may contribute to recovery from experimental parkinsonism. Brain Res. 1994;643(1-2):86-91.[45] Fuxe K, Rivera A, Jacobsen KX, et al. Dynamics of volume transmission in the brain. Focus on catecholamine and opioid peptide communication and the role of uncoupling protein 2. J Neural Transm. 2005;112(1): 65-76.[46] Oláh S, Füle M, Komlósi G, et al. Regulation of cortical microcircuits by unitary GABA-mediated volume transmission. Nature. 2009;461(7268):1278-1281.[47] Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216-1219.[48] Fuxe K, Manger P, Genedani S, et al. The nigrostriatal DA pathway and Parkinson's disease. J Neural Transm Suppl. 2006;(70):71-83.[49] Meland MN, Herndon ME, Stipp CS. Expression of alpha5 integrin rescues fibronectin responsiveness in NT2N CNS neuronal cells. J Neurosci Res. 2010;88(1):222-232.[50] Fuxe K, Dahlström AB, Jonsson G, et al. The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog Neurobiol. 2010;90(2):82-100.[51] Merino García LC, González Sarmiento E, Rubio del Val MC, et al. Fibronectin as a diagnostic marker in several determined neurological diseases. An Med Interna. 2000; 17(8):406-409. |
[1] | Gao-Jing Xu, Qun Zhang, Si-Yue Li, Yi-Tong Zhu, Ke-Wei Yu, Chuan-Jie Wang, Hong-Yu Xie, Yi Wu. Environmental enrichment combined with fasudil treatment inhibits neuronal death in the hippocampal CA1 region and ameliorates memory deficits [J]. Neural Regeneration Research, 2021, 16(8): 1460-1466. |
[2] | Stefan Kassumeh, Gregor R. Weber, Matthias Nobl, Siegfried G. Priglinger, Andreas Ohlmann. The neuroprotective role of Wnt signaling in the retina [J]. Neural Regeneration Research, 2021, 16(8): 1524-1528. |
[3] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[4] | Dulce Parra-Villamar, Liliana Blancas-Espinoza, Elisa Garcia-Vences, Juan Herrera-García, Adrian Flores-Romero, Alberto Toscano-Zapien, Jonathan Vilchis Villa, Rodríguez Barrera-Roxana, Soria Zavala Karla, Antonio Ibarra, Raúl Silva-García. Neuroprotective effect of immunomodulatory peptides in rats with traumatic spinal cord injury [J]. Neural Regeneration Research, 2021, 16(7): 1273-1280. |
[5] | Min Wang, Juan-Juan Tang, Lin-Xiao Wang, Jun Yu, Li Zhang, Chen Qiao. Hydrogen sulfide enhances adult neurogenesis in a mouse model of Parkinson’s disease [J]. Neural Regeneration Research, 2021, 16(7): 1353-1358. |
[6] | Zhe Cheng, Feng-Wu Li, Christopher R. Stone, Kenneth Elkin, Chang-Ya Peng, Redina Bardhi, Xiao-Kun Geng, Yu-Chuan Ding. Normobaric oxygen therapy attenuates hyperglycolysis in ischemic stroke [J]. Neural Regeneration Research, 2021, 16(6): 1017-1023. |
[7] | Zi-Qi Shao, Shan-Shan Dou, Jun-Ge Zhu, Hui-Qing Wang, Chun-Mei Wang, Bao-Hua Cheng, Bo Bai. Apelin-13 inhibits apoptosis and excessive autophagy in cerebral ischemia/reperfusion injury [J]. Neural Regeneration Research, 2021, 16(6): 1044-1051. |
[8] | Giuseppe Cappellano, Domizia Vecchio, Luca Magistrelli, Nausicaa Clemente, Davide Raineri, Camilla Barbero Mazzucca, Eleonora Virgilio, Umberto Dianzani, Annalisa Chiocchetti, Cristoforo Comi. The Yin-Yang of osteopontin in nervous system diseases: damage versus repair [J]. Neural Regeneration Research, 2021, 16(6): 1131-1137. |
[9] | Ming-Yu Shi, Cheng-Cheng Ma, Fang-Fang Chen, Xiao-Yu Zhou, Xue Li, Chuan-Xi Tang, Lin Zhang, Dian-Shuai Gao. Possible role of glial cell line-derived neurotrophic factor for predicting cognitive impairment in Parkinson’s disease: a case-control study [J]. Neural Regeneration Research, 2021, 16(5): 885-892. |
[10] | Mariam Rizk, Justin Vu, Zhi Zhang. Impact of pediatric traumatic brain injury on hippocampal neurogenesis [J]. Neural Regeneration Research, 2021, 16(5): 926-933. |
[11] | Igor Iezhitsa, Renu Agarwal. New solutions for old challenges in glaucoma treatment: is taurine an option to consider? [J]. Neural Regeneration Research, 2021, 16(5): 967-971. |
[12] | Magdalini Tsintou, Kyriakos Dalamagkas, Tara L. Moore, Yogesh Rathi, Marek Kubicki, Douglas L. Rosene, Nikos Makris. The use of hydrogel-delivered extracellular vesicles in recovery of motor function in stroke: a testable experimental hypothesis for clinical translation including behavioral and neuroimaging assessment approaches [J]. Neural Regeneration Research, 2021, 16(4): 605-613. |
[13] | Hilda Martínez-Coria, Isabel Arrieta-Cruz, María-Esther Cruz, Héctor E. López-Valdés. Physiopathology of ischemic stroke and its modulation using memantine: evidence from preclinical stroke [J]. Neural Regeneration Research, 2021, 16(3): 433-439. |
[14] | Ijair R.C. dos Santos, Michelle Nerissa C. Dias, Walace Gomes-Leal. Microglial activation and adult neurogenesis after brain stroke [J]. Neural Regeneration Research, 2021, 16(3): 456-459. |
[15] | Takao Ishikawa. Saccharomyces cerevisiae in neuroscience: how unicellular organism helps to better understand prion protein? [J]. Neural Regeneration Research, 2021, 16(3): 489-495. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||