Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (5): 404-409.doi: 10.3969/j.issn.1673-5374.2013.05.003
Previous Articles Next Articles
Zhaozong Fu, Hai Lu, Jianming Jiang, Hui Jiang, Zhaofei Zhang
Received:
2012-04-27
Revised:
2012-10-29
Online:
2013-02-15
Published:
2013-02-15
Contact:
Jianming Jiang, Professor, Doctoral supervisor, Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China, jjm19991999@sohu.com
About author:
Zhaozong Fu☆, Studying for doctorate
Zhaozong Fu, Hai Lu, Jianming Jiang, Hui Jiang, Zhaofei Zhang. Methylprednisolone inhibits Nogo-A protein expression after acute spinal cord injury[J]. Neural Regeneration Research, 2013, 8(5): 404-409.
[1] Ambrozaitis KV, Kontautas E, Spakauskas B, et al. Pathophysiology of acute spinal cord injury. Medicina (Kaunas). 2006;42(3):255-261.[2] Bohlman HH, Kirkpatrick JS, Delamarter RB, et al. Anterior decompression for late pain and paralysis after fractures of the thoracolumbar spine. Clin Orthop Relat Res. 1994;(300):24-29.[3] Carl AL, Tranmer BI, Sachs BL. Anterolateral dynamized instrumentation and fusion for unstable thoracolumbar and lumbar burst fractures. Spine (Phila Pa 1976). 1997; 22(6):686-690.[4] Chen MS, Huber AB, van der Haar ME, et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature. 2000; 403(6768):434-439.[5] Freund P, Schmidlin E, Wannier T, et al. Anti-Nogo-A antibody treatment promotes recovery of manual dexterity after unilateral cervical lesion in adult primates--re- examination and extension of behavioral data. Eur J Neurosci. 2009;29(5):983-996.[6] Horner PJ, Gage FH. Regenerating the damaged central nervous system. Nature. 2000;407(6807):963-970.[7] Cao Z, Gao Y, Deng K, et al. Receptors for myelin inhibitors: Structures and therapeutic opportunities. Mol Cell Neurosci. 2010;43(1):1-14. [8] Lee JK, Chan AF, Luu SM, et al. Reassessment of corticospinal tract regeneration in Nogo-deficient mice. J Neurosci. 2009;29(27):8649-8654.[9] Peng X, Zhou Z, Hu J, et al. Soluble Nogo receptor down-regulates expression of neuronal Nogo-A to enhance axonal regeneration. J Biol Chem. 2010;285(4): 2783-2795. [10] Constantini S, Young W. The effects of methylprednisolone and the ganglioside GM1 on acute spinal cord injury in rats. J Neurosurg. 1994;80(1):97-111.[11] Wang XX, Guo XL, Yi LH. Expression of Nogo-A protein and its significance in the central nervous system of adult mice. Zhonghua Chuangshang Zazhi. 2003;19(11): 673-676. [12] Zhang Q, Zou DW, Hai Y, et al. Effect of adenovirus- mediated brain derived neurotrophic factor ex vivo transgene myoblasts cells and methylprednisolone on apoptosis after spinal cord injury. Zhongguo Jizhu Jisui Zazhi. 2005;15(7):425-428.[13] David S, Aguayo AJ. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science. 1981;214(4523):931-933.[14] Schwab ME, Caroni P. Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J Neurosci. 1988;8(7): 2381-2393.[15] Bandtlow C, Zachleder T, Schwab ME. Oligodendrocytes arrest neurite growth by contact inhibition. J Neurosci. 1990;10(12):3837-3848.[16] Caroni P, Schwab ME. Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J Cell Biol. 1988;106(4): 1281-1288.[17] McKerracher L, David S, Jackson DL, et al. Identification of myelin-associated glycoprotein as a major myelin- derived inhibitor of neurite growth. Neuron. 1994;13(4): 805-811.[18] Mukhopadhyay G, Doherty P, Walsh FS, et al. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron. 1994;13(3):757-767.[19] Spillmann AA, Bandtlow CE, Lottspeich F, et al. Identification and characterization of a bovine neurite growth inhibitor (bNI-220). J Biol Chem. 1998;273(30): 19283-19293.[20] Wong ST, Henley JR, Kanning KC, et al. A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat Neurosci. 2002; 5(12):1302-1308.[21] Yamagishi S, Fujitani M, Hata K, et al. Wallerian degeneration involves Rho/Rho-kinase signaling. J Biol Chem. 2005;280(21):20384-20388.[22] Cayli SR, Kocak A, Yilmaz U, et al. Effect of combined treatment with melatonin and methylprednisolone on neurological recovery after experimental spinal cord injury. Eur Spine J. 2004;13(8):724-732.[23] Takami T, Oudega M, Bethea JR, et al. Methylprednisolone and interleukin-10 reduce gray matter damage in the contused Fischer rat thoracic spinal cord but do not improve functional outcome. J Neurotrauma. 2002;19(5):653-666.[24] Casha S, Yu WR, Fehlings MG. Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. Neuroscience. 2001;103(1):203-218.[25] Naso WB, Perot PL Jr, Cox RD. The neuroprotective effect of high-dose methylprednisolone in rat spinal cord hemisection. Neurosci Lett. 1995;189(3):176-178.[26] Falconer JC, Narayana PA, Bhattacharjee M, et al. Characterization of an experimental spinal cord injury model using waveform and morphometric analysis. Spine (Phila Pa 1976). 1996;21(1):104-112.[27] Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12(1):1-21.[28] Dergham P, Ellezam B, Essagian C, et al. Rho signaling pathway targeted to promote spinal cord repair. J Neurosci. 2002;22(15):6570-6577.[29] Fournier AE, Takizawa BT, Strittmatter SM. Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci. 2003;23(4):1416-1423.[30] Ramón-Cueto A, Cordero MI, Santos-Benito FF, et al. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron. 2000;25(2):425-435. |
[1] | Yu Li, Ping-Ping Shen, Bin Wang. Induced pluripotent stem cell technology for spinal cord injury: a promising alternative therapy [J]. Neural Regeneration Research, 2021, 16(8): 1500-1509. |
[2] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[3] | Ayaka Sugeno, Wenhui Piao, Miki Yamazaki, Kiyofumi Takahashi, Koji Arikawa, Hiroko Matsunaga, Masahito Hosokawa, Daisuke Tominaga, Yoshio Goshima, Haruko Takeyama, Toshio Ohshima. Cortical transcriptome analysis after spinal cord injury reveals the regenerative mechanism of central nervous system in CRMP2 knock-in mice [J]. Neural Regeneration Research, 2021, 16(7): 1258-1265. |
[4] | Dulce Parra-Villamar, Liliana Blancas-Espinoza, Elisa Garcia-Vences, Juan Herrera-García, Adrian Flores-Romero, Alberto Toscano-Zapien, Jonathan Vilchis Villa, Rodríguez Barrera-Roxana, Soria Zavala Karla, Antonio Ibarra, Raúl Silva-García. Neuroprotective effect of immunomodulatory peptides in rats with traumatic spinal cord injury [J]. Neural Regeneration Research, 2021, 16(7): 1273-1280. |
[5] | Li-Jian Zhang, Yao Chen, Lu-Xuan Wang, Xiao-Qing Zhuang He-Chun Xia. Identification of potential oxidative stress biomarkers for spinal cord injury in erythrocytes using mass spectrometry [J]. Neural Regeneration Research, 2021, 16(7): 1294-1301. |
[6] | Rong Li, Zu-Cheng Huang, Hong-Yan Cui, Zhi-Ping Huang, Jun-Hao Liu, Qing-An Zhu, Yong Hu. Utility of somatosensory and motor-evoked potentials in reflecting gross and fine motor functions after unilateral cervical spinal cord contusion injury [J]. Neural Regeneration Research, 2021, 16(7): 1323-1330. |
[7] | Tianci Chu, Lisa B.E. Shields, Wenxin Zeng, Yi Ping Zhang, Yuanyi Wang, Gregory N. Barnes, Christopher B. Shields, Jun Cai. Dynamic glial response and crosstalk in demyelination-remyelination and neurodegeneration processes [J]. Neural Regeneration Research, 2021, 16(7): 1359-1368. |
[8] | Yansheng Liu, Jia-Xin Xie, Fang Niu, Zhexi Xu, Pengju Tan, Caihong Shen, Hongkun Gao, Song Liu, Zhengwen Ma, Kwok-Fai So, Wutian Wu, Chen Chen, Sujuan Gao, Xiao-Ming Xu, Hui Zhu. Surgical intervention combined with weight-bearing walking training improves neurological recoveries in 320 patients with clinically complete spinal cord injury: a prospective self-controlled study [J]. Neural Regeneration Research, 2021, 16(5): 820-829. |
[9] | Mariam Rizk, Justin Vu, Zhi Zhang. Impact of pediatric traumatic brain injury on hippocampal neurogenesis [J]. Neural Regeneration Research, 2021, 16(5): 926-933. |
[10] | Magdalini Tsintou, Kyriakos Dalamagkas, Tara L. Moore, Yogesh Rathi, Marek Kubicki, Douglas L. Rosene, Nikos Makris. The use of hydrogel-delivered extracellular vesicles in recovery of motor function in stroke: a testable experimental hypothesis for clinical translation including behavioral and neuroimaging assessment approaches [J]. Neural Regeneration Research, 2021, 16(4): 605-613. |
[11] | Lindsey H. Forbes, Melissa R. Andrews. Advances in human stem cell therapies: pre-clinical studies and the outlook for central nervous system regeneration [J]. Neural Regeneration Research, 2021, 16(4): 614-617. |
[12] | Jayden Clark, Zhendan Zhu, Jyoti Chuckowree, Tracey Dickson, Catherine Blizzard. Efficacy of epothilones in central nervous system trauma treatment: what has age got to do with it? [J]. Neural Regeneration Research, 2021, 16(4): 618-620. |
[13] | Yuexian Cui, Xuelian Jin, Jun Young Choi, Byung Gon Kim. Modeling subcortical ischemic white matter injury in rodents: unmet need for a breakthrough in translational research [J]. Neural Regeneration Research, 2021, 16(4): 638-642. |
[14] | Ke-Xue Zhang, Jia-Jia Zhao, Wei Chai, Ji-Ying Chen. Synaptic remodeling in mouse motor cortex after spinal cord injury [J]. Neural Regeneration Research, 2021, 16(4): 744-749. |
[15] | Lu-Xia Ye, Ning-Chen An, Peng Huang, Duo-Hui Li, Zhi-Long Zheng, Hao Ji, Hao Li, Da-Qing Chen, Yan-Qing Wu, Jian Xiao, Ke Xu, Xiao-Kun Li, Hong-Yu Zhang. Exogenous platelet-derived growth factor improves neurovascular unit recovery after spinal cord injury [J]. Neural Regeneration Research, 2021, 16(4): 757-763. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||