Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (6): 546-553.doi: 10.3969/j.issn.1673-5374.2013.06.008
Previous Articles Next Articles
Xiaoyan Shen1, 2, Zhigong Wang2, Xiaoying Lv3, Zonghao Huang2
Received:
2012-06-09
Revised:
2012-12-26
Online:
2013-02-25
Published:
2013-02-25
Contact:
Zhigong Wang, M.D., Professor, Institute of RF- & OE-ICs, Southeast University, Nantong 210096, Jiangsu Province, China, zgwang@seu.edu.cn.
About author:
Xiaoyan Shen☆, M.D., Associate professor.
Supported by:
This work was supported by the National Natural Science Foundation of China, No, 90707005, 61001046 and 61204018; the Natural Science Foundation of Education Department of Jiangsu Province, No. 11KJB510023; the Special Foundation and Open Foundation of State Key Laboratory of Bioelectronics of Southeast University, No. 2011E05.
Xiaoyan Shen, Zhigong Wang, Xiaoying Lv, Zonghao Huang. Microelectronic neural bridging of toad nerves to restore leg function[J]. Neural Regeneration Research, 2013, 8(6): 546-553.
[1] Giszter SF. Spinal cord injury: present and future therapeutic devices and prostheses. Neurotherapeutics. 2008;5(1):147-162.[2] Tanriverdi T, Al-Jehani H, Poulin N, et al. Functional results of electrical cortical stimulation of the lower sensory strip. J Clin Neurosci. 2009;16(9):1188-1194. [3] Vinit S, Kastner A. Descending bulbospinal pathways and recovery of respiratory motor function following spinal cord injury. Respir Physiol Neurobiol. 2009;169(2): 115-122. [4] Bamford JA, Todd KG, Mushahwar VK. The effects of intraspinal microstimulation on spinal cord tissue in the rat. Biomaterials. 2010;31(21):5552-5563.[5] Bamford JA, Mushahwar VK. Intraspinal microstimulation for the recovery of function following spinal cord injury. Prog Brain Res. 2011;194:227-239.[6] Johnson MD, Franklin RK, Gibson MD, et al. Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings. J Neurosci Methods. 2008;174(1):62-70.[7] Stieglitz T, Rubehn B, Henle C, et al. Brain-computer interfaces: an overview of the hardware to record neural signals from the cortex. Prog Brain Res. 2009;175: 297-315.[8] Do AH, Wang PT, King CE, et al. Brain-computer interface controlled functional electrical stimulation system for ankle movement. J Neuroeng Rehabil. 2011;8:49.[9] Gad P, Woodbridge J, Lavrov I, et al. Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats. J Neuroeng Rehabil. 2012;9(1):38. [10] Fairchild MD, Kim SJ, Iarkov A, et al. Repetetive hindlimb movement using intermittent adaptive neuromuscular electrical stimulation in an incomplete spinal cord injury rodent model. Exp Neurol. 2010;223(2):623-633.[11] Bittar CK, Cliquet A Jr. Rehabilitation programme using neuromuscular electrical stimulation in spinal cord: epidemiological aspects. Acta Med Port. 2011;24(4): 527-532. [12] Lai CH, Chang WH, Chan WP, et al. Effects of functional electrical stimulation cycling exercise on bone mineral density loss in the early stages of spinal cord injury. J Rehabil Med. 2010;42(2):150-154.[13] Velez FG, Isobe J, Zealear D, et al. Toward an implantable functional electrical stimulation device to correct strabismus. J AAPOS. 2009;13(3):229-235.e1. [14] Courtine G, Gerasimenko Y, van den Brand R, et al. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci. 2009;12(10):1333-1342. [15] Cooke RM, Parker D. Locomotor recovery after spinal cord lesions in the lamprey is associated with functional and ultrastructural changes below lesion sites. J Neurotrauma. 2009;26(4):597-612.[16] Hakansson NA, Hull ML. Muscle stimulation waveform timing patterns for upper and lower leg muscle groups to increase muscular endurance in functional electrical stimulation pedaling using a forward dynamic model. IEEE Trans Biomed Eng. 2009;56(9):2263-2270. [17] Gwilliam JC, Horch K. A charge-balanced pulse generator for nerve stimulation applications. J Neurosci Methods. 2008;168(1):146-150.[18] Bütikofer R, Lawrence PD. Electrocutaneous nerve stimulation-II: stimulus waveform selection. IEEE Trans Biomed Eng. 1979;26(2):69-75.[19] Wang ZG, Lv XY, Li WY, et al. Study of microelectronics for detecting and stimulating of central neural signals. In: IEEE proceedings of international conference on neural interface and control. Wuhan, 2005.[20] Wang ZG, Gu XS, Lv XY. Neural channel bridge aided by a micro-electronic system. China, CN200510135541.6. 2006-08-02.[21] Wang ZG, Gu XS, Lv XY. Neural channel bridge aided by a micro-electronic system. USA, 8000806. 2011-08-16.[22] Wang ZG, Gu XS, Lv XY, et al, Microelectronics-embedded channel bridging and signal regeneration of injured spinal cords. Prog Nat Sci. 2009; 19(10):1261-1269.[23] Ichihara K, Venkatasubramanian G, Abbas JJ, et al. Neuromuscular electrical stimulation of the hindlimb muscles for movement therapy in a rodent model. J Neurosci Methods. 2009;176(2):213-224. [24] Judge SE. General anaesthetic action in the invertebrate central nervous system. Gen Pharmacol. 1980;11(4): 337-341.[25] Judge SE, Norman J. The action of general anaesthetics on acetylcholine-induced inhibition in the central nervous system of Helix. Br J Pharmacol. 1982;75(2):353-357.[26] Shen XY, Wang ZG, Lu XY, et al. Neural signal sensing, transmission and functional regeneration on different toads' bodies. Conf Proc IEEE Eng Med Biol Soc. 2009; 2009:5953-5956.[27] Shen XY, Wang ZG, Lu XY, et al. Neural function rebuilding on different bodies using microelctronic neural bridge technique. Dongnan Daxue Xuebao. 2010;26(4): 523-527.[28] Akin T, Najafi K, Smoke RH, et al. A micromachined silicon sieve electrode for nerve regeneration applications. IEEE Trans Biomed Eng. 1994;41(4):305-313.[29] Richardson RR Jr, Miller JA, Reichert WM. Polyimides as biomaterials: preliminary biocompatibility testing. Biomaterials. 1993;14(8):627-635.[30] Haggerty HS, Lusted HS. Histological reaction to polyimide films in the cochlea. Acta Otolaryngol. 1989; 107(1-2):13-22.[31] Brimble MJ, Musabayane CT. Blood-circulated sciatic nerve-gastrocnemius muscle preparation in the spinal toad. Physiologist. 1984;27(1):47-49.[32] De Michele G, Sello S, Carboncini MC, et al. Cross-correlation time-frequency analysis for multiple EMG signals in Parkinson's disease: a wavelet approach. Med Eng Phys. 2003;25(5):361-369.[33] Subasi A, Yilmaz M, Ozcalik HR. Classification of EMG signals using wavelet neural network. J Neurosci Methods. 2006;156(1-2):360-367. [34] Strambi SK, Rossi B, De Michele G, et al. Effect of medication in Parkinson's disease: a wavelet analysis of EMG signals. Med Eng Phys. 2004;26(4):279-290.[35] Yianni J, Wang SY, Liu X, et al. A dominant bursting electromyograph pattern in dystonic conditions predicts an early response to pallidal stimulation. J Clin Neurosci. 2006;13(7):738-746.[36] Mallat SG. A Wavelet Tour of Signal Processing. Maryland Height: Academic Press. 2009.[37] Samar VJ. Wavelet analysis of neuroelectric waveforms Brain Lang. 1999;66(1):1-6.[38] Grosse P, Cassidy MJ, Brown P. EEG-EMG, MEG-EMG and EMG-EMG frequency analysis: physiological principles and clinical applications. Clin Neurophysiol. 2002;113(10):1523-1531.[39] Zhan Y, Halliday D, Jiang P, et al. Detecting time-dependent coherence between non-stationary electrophysiological signals--a combined statistical and time-frequency approach. J Neurosci Methods. 2006; 156(1-2):322-332. [40] Issartel J, Marin L, Gaillot P, et al. A practical guide to time-frequency analysis in the study of human motor behavior: the contribution of wavelet transform. J Mot Behav. 2006;38(2):139-159. |
[1] | Sara Saffari, Tiam M. Saffari, Dietmar J. O. Ulrich, Steven E. R. Hovius, Alexander Y. Shin. The interaction of stem cells and vascularity in peripheral nerve regeneration [J]. Neural Regeneration Research, 2021, 16(8): 1510-1517. |
[2] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[3] | Lixia Li, Yizhou Xu, Xianghai Wang, Jingmin Liu, Xiaofang Hu, Dandan Tan, Zhenlin Li, Jiasong Guo. Ascorbic acid accelerates Wallerian degeneration after peripheral nerve injury [J]. Neural Regeneration Research, 2021, 16(6): 1078-1085. |
[4] | Xiao-Qing Cheng, Wen-Jing Xu, Xiao Ding, Gong-Hai Han, Shuai Wei, Ping Liu, Hao-Ye Meng, Ai-Jia Shang, Yu Wang, Ai-Yuan Wang. Bioinformatic analysis of cytokine expression in the proximal and distal nerve stumps after peripheral nerve injury [J]. Neural Regeneration Research, 2021, 16(5): 878-884. |
[5] | Mariam Rizk, Justin Vu, Zhi Zhang. Impact of pediatric traumatic brain injury on hippocampal neurogenesis [J]. Neural Regeneration Research, 2021, 16(5): 926-933. |
[6] | Magdalini Tsintou, Kyriakos Dalamagkas, Tara L. Moore, Yogesh Rathi, Marek Kubicki, Douglas L. Rosene, Nikos Makris. The use of hydrogel-delivered extracellular vesicles in recovery of motor function in stroke: a testable experimental hypothesis for clinical translation including behavioral and neuroimaging assessment approaches [J]. Neural Regeneration Research, 2021, 16(4): 605-613. |
[7] | Joseph A. Shehadi, Steven M. Elzein, Paul Beery, M. Chance Spalding, Michelle Pershing. Combined administration of platelet rich plasma and autologous bone marrow aspirate concentrate for spinal cord injury: a descriptive case series [J]. Neural Regeneration Research, 2021, 16(2): 362-366. |
[8] | Wen-Rui Qu, Zhe Zhu, Jun Liu, De-Biao Song, Heng Tian, Bing-Peng Chen, Rui Li, Ling-Xiao Deng. Interaction between Schwann cells and other cells during repair of peripheral nerve injury [J]. Neural Regeneration Research, 2021, 16(1): 93-98. |
[9] | Jing Wang, Ya-Qiong Zhu, Yu Wang, Hong-Guang Xu, Wen-Jing Xu, Yue-Xiang Wang, Xiao-Qing Cheng, Qi Quan, Yong-Qiang Hu, Chang-Feng Lu, Yan-Xu Zhao, Wen Jiang, Chen Liu, Liang Xiao, Wei Lu, Chen Zhu, Ai-Yuan Wang . A novel tissue engineered nerve graft constructed with autologous vein and nerve microtissue repairs a long-segment sciatic nerve defect [J]. Neural Regeneration Research, 2021, 16(1): 143-149. |
[10] | Bo Li, Liang Chen , Yu-Dong Gu. Stability of motor endplates is greater in the biceps than in the interossei in a rat model of obstetric brachial plexus palsy [J]. Neural Regeneration Research, 2020, 15(9): 1678-1685. |
[11] | Tiam M. Saffari, Meiwand Bedar, Caroline A. Hundepool , Allen T. Bishop , Alexander Y. Shin. The role of vascularization in nerve regeneration of nerve graf [J]. Neural Regeneration Research, 2020, 15(9): 1573-1579. |
[12] | Susan R. Goulding, Aideen M. Sullivan , Gerard W. O’Keeffe , Louise M. Collins. The potential of bone morphogenetic protein 2 as a neurotrophic factor for Parkinson’s disease [J]. Neural Regeneration Research, 2020, 15(8): 1432-1436. |
[13] | Yin-Ying Shen, Xiao-Kun Gu, Rui-Rui Zhang , Tian-Mei Qian , Shi-Ying Li , Sheng Yi . Biological characteristics of dynamic expression of nerve regeneration related growth factors in dorsal root ganglia after peripheral nerve injury [J]. Neural Regeneration Research, 2020, 15(8): 1502-1509. |
[14] | Ya Zheng, Ye-Ran Mao, Ti-Fei Yuan , Dong-Sheng Xu , Li-Ming Cheng. Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation [J]. Neural Regeneration Research, 2020, 15(8): 1437-1450. |
[15] | Peter J.G. Cussell, Margarita Gomez Escalada, Nathaniel G.N. Milton, Andrew W.J. Paterson. The N-formyl peptide receptors: contemporary roles in neuronal function and dysfunction [J]. Neural Regeneration Research, 2020, 15(7): 1191-1198. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||