[1] Malarkey EB, Fisher KA, Bekyarova E, et al. Conductive single-walled carbon nanotube substrates modulate neuronal growth. Nano Lett. 2009;9(1):264-268. http://pubs.acs.org/doi/abs/10.1021/nl802855c [2] McCaig CD. Nerve branching is induced and oriented by a small applied electric field. J Cell Sci. 1990;95:605-615. http://jcs.biologists.org/content/95/4/605.long [3] McCaig CD, Stewart R. The effects of melanocortins and electrical fields on neuronal growth. Exp Neurol. 1992; 116(2):172-179. http://www.sciencedirect.com/science/article/pii/001448869290165M [4] Borgens RB. Electrically mediated regeneration and guidance of adult mammalian spinal axons into polymeric channels. Neuroscience. 1999;91(1):251-264. http://www.sciencedirect.com/science/article/pii/S0306452298005843 [5] Schmidt CE, Shastri VR, Vacanti JP, et al. Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci U S A. 1997;94(17):8948-8953. http://www.pnas.org/content/94/17/8948.long [6] Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci. 2007;32(8-9):876-921. http://www.sciencedirect.com/science/article/pii/S0079670007000676 [7] Zhang Z, Rouabhia M, Wang ZX, et al. Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration. Artif Organs. 2007;31(1):13-22. http://onlinelibrary.wiley.com/doi/10.1111/j.1525-1594.2007.00335.x/abstract;jsessionid=9A34044CC5425D3DB7C409201BD5F2BA.d03t04 [8] Wang Y, Wen DJ. Preparation and characterization of porous conducting poly(DL-Lactide) composite membranes. J Mem Sci. 2005;246(2):193-201.http://www.sciencedirect.com/science/article/pii/S0376738804005964 [9] Jiang XP, Marois Y, Traoré A, et al. Tissue reaction to polypyrrole-coated polyester fabrics: an in vivo study in rats. Tissue Eng. 2002;8(4):635-647. http://online.liebertpub.com/doi/abs/10.1089/107632702760240553 [10] Wang ZK, Roberge C, Wan Y, et al. A biodegradable electrical bioconductor made of polypyrrole nanoparticle/Poly (d,1-lactide) composite: a preliminary in vitro biostability study. J Biomed Mater Res A. 2003;66(4):738-747. http://onlinelibrary.wiley.com/doi/10.1002/jbm.a.10037/abstract [11] Lee JY, Bashur CA, Goldstein AS, et al. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials. 2009;30(26): 4325-4335. http://www.sciencedirect.com/science/article/pii/S0142961209004633 [12] Wang X, Gu X, Yuan C, et al. Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J Biomed Mater Res A. 2004;68A(3):411-422. http://dx.doi.org/10.1002/jbm.a.20065 [13] Li Y, Neoh KG, Cen L, et al. Porous and electrically conductive polypyrrole−poly(vinyl alcohol) composite and its applications as a biomaterial. Langmuir. 2005;21(23):10702-10709. http://pubs.acs.org/doi/abs/10.1021/la0514314 [14] Alison J, Brianna C, Gordon G, et al. Promoting neurite outgrowth from spiral ganglion neuron explants using polypyrrole/BDNF-coated electrodes. J Biomed Mater Res A. 2009;91(1):241-250. http://dx.doi.org/10.1002/jbm.a.32228 [15] Lakard S, Herlem G, Propper A, et al. Adhesion and proliferation of cells on new polymers modified biomaterials. Bioelectrochemitry. 2004;62(1):19-27.http://www.sciencedirect.com/science/article/pii/S1567539403001038 [16] Lakard S, Herlem G, Valles-Villareal N, et al. Culture of neural cells on polymers coated surfaces for biosensor applications. Biosens Bioelectron. 2005;20(10): 1946-1954. http://www.sciencedirect.com/science/article/pii/S0956566304004099 [17] Robinson KR, Cormie P. Electric field effects on human spinal injury: is there a basis in the in vitro studies? Dev Neurobiol. 2008;68(2):274-280.http://onlinelibrary.wiley.com/doi/10.1002/dneu.20570/abstract [18] Luu YK, Kim K, Hsiao BS, et al. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Control Release. 2003;89(2):341-349. http://www.sciencedirect.com/science/article/pii/S016836590300097X [19] Yoshimoto H, Shin YM, Terai H, et al. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24(12): 2077-2082. http://www.sciencedirect.com/science/article/pii/S014296120200635X [20] Zong XH, Ran S, Fang D, et al. Control of structure, morphology and property in electrospun poly(glycolide-co-lactide) nonwoven membranes via post-draw treatments. Polymer. 2003;44(17):4959-4967.http://144.206.159.178/ft/862/184352/4709358.pdf [21] Yu QZ, Dai ZW, Lan P. Fabrication of high conductivity dual multi-porous poly (L-lactic acid)/polypyrrole composite micro/nanofibrous scaffold. Mater Sci and Eng: Part B. 2011;176(12):913-920.http://scienceindex.com/stories/1653805/Fabrication_of_high_conductivity_dual_multiporous_poly_llactic_acidpolypyrrole_composite_micronanofiber_film.html [22] Leach JB, Brown XQ, Jacot JG, et al. Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. J Neural Eng. 2007;4(2):26-34. http://iopscience.iop.org/1741-2552/4/2/003/ |