Neural Regeneration Research ›› 2025, Vol. 20 ›› Issue (7): 1883-1899.doi: 10.4103/NRR.NRR-D-24-00048

Previous Articles     Next Articles

Liposomes as versatile agents for the management of traumatic and nontraumatic central nervous system disorders: drug stability, targeting efficiency, and safety

Mingyu Zhang, Chunyu Xiang, Renrui Niu, Xiaodong He, Wenqi Luo* , Wanguo Liu* , Rui Gu*   

  1. Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
  • Online:2025-07-15 Published:2024-11-25
  • Contact: Rui Gu, PhD, gurui@jlu.edu.cn; Wanguo Liu, PhD, liuwanguo6016@jlu.edu.cn; Wenqi Luo, PhD, luowenqi@jlu.edu.cn.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China, Nos. 82271411 (to RG), 51803072 (to WLiu); grants from the Department of Finance of Jilin Province, Nos. 2022SCZ25 (to RG), 2022SCZ10 (to WLiu), 2021SCZ07 (to RG); Jilin Provincial Science and Technology Program, No. YDZJ202201ZYTS038 (to WLiu); The Youth Support Programmed Project of China-Japan Union Hospital of Jilin University, No. 2022qnpy11 (to WLuo); and The Project of China-Japan Union Hospital of Jilin University, No. XHQMX20233 (to RG).

Abstract: Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied. However, their inability to cross the blood–brain barrier hampers the clinical translation of these therapeutic strategies. Liposomes are nanoparticles composed of lipid bilayers, which can effectively encapsulate drugs and improve drug delivery across the blood–brain barrier and into brain tissue through their targeting and permeability. Therefore, they can potentially treat traumatic and nontraumatic central nervous system diseases. In this review, we outlined the common properties and preparation methods of liposomes, including thin-film hydration, reverse-phase evaporation, solvent injection techniques, detergent removal methods, and microfluidics techniques. Afterwards, we comprehensively discussed the current applications of liposomes in central nervous system diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, traumatic brain injury, spinal cord injury, and brain tumors. Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials. Additionally, their application as drug delivery systems in clinical practice faces challenges such as drug stability, targeting efficiency, and safety. Therefore, we proposed development strategies related to liposomes to further promote their development in neurological disease research.

Key words: Alzheimer’s disease, amyotrophic lateral sclerosis, brain tumors, central nervous system; Huntington’s disease, liposome drug delivery, neurological disorders, Parkinson’s disease, spinal cord injury, traumatic brain injury