Neural Regeneration Research ›› 2020, Vol. 15 ›› Issue (5): 887-893.doi: 10.4103/1673-5374.268905

Previous Articles     Next Articles

Korean red ginseng promotes hippocampal neurogenesis in mice

Sun Ryu1, Hyongjun Jeon1, 2, Hee-Young Kim1, Sungtae Koo1, 2, Seungtae Kim1, 2   

  1. 1 Korean Medicine Research Center for Healthy Aging, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si,
    Gyeongsangnam-do 50612, Republic of Korea
    2 Department of Korean Medical Science, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
  • Online:2020-05-15 Published:2020-06-01
  • Contact: Seungtae Kim, PhD,kimst@pusan.ac.kr.
  • Supported by:
    This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2016R1D1A3B03930920 to SK) and the MSIP (No. NRF-2014R1A5A2009936 to SK).

Abstract: Neurogenesis in the adult hippocampus plays a major role in cognitive ability of animals including learning and memory. Korean red ginseng (KRG) has long been known as a medicinal herb with the potential to improve learning and memory; however, the mechanisms are still elusive. Therefore, we evaluated whether KRG can promote cognitive function and enhance neurogenesis in the hippocampus. Eight-week-old male C57BL/6 mice received 50 mg/kg of 5-bromo-2′-deoxyuridine (BrdU) intraperitoneally and 100 mg/kg of KRG or vehicle orally once a day for 14 days. Pole, Rotarod and Morris water maze tests were performed and the brains were collected after the last behavioral test. Changes in the numbers of BrdU- and BrdU/ doublecortin (DCX; a marker for neuronal precursor cells and immature neurons)-positive cells in the dentate gyrus and the gene expression of proliferating cell nuclear antigen (a marker for cell differentiation), cerebral dopamine neurotrophic factor and ciliary neurotrophic factor in the hippocampus were then investigated. KRG-treated mice came down the pole significantly faster and stood on the rotarod longer than vehicle-treated mice. The Morris water maze test showed that KRG administration enhanced the learning and memory abilities significantly. KRG also significantly increased BrdU- and BrdU/DCX-positive cells in the dentate gyrus as well as the proliferating cell nuclear antigen, cerebral dopamine neurotrophic factor and ciliary neurotrophic factor mRNA expression levels in the hippocampus compared to vehicle. Administration of KRG promotes learning and memory abilities, possibly by enhancing hippocampal neurogenesis. This study was approved by the Pusan National University Institutional Animal Care and Use Committee (approval No. PNU-2016-1071) on January 19, 2016.

Key words: bromodeoxyuridine, cerebral dopamine neurotrophic factor, ciliary neurotrophic factor, doublecortin, ginseng, hippocampus, Korean red ginseng, learning, memory, neurogenesis, proliferating cell nuclear antigen, red ginseng