Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (3): 258-263.doi: 10.3969/j.issn.1673-5374.2013.03.008
Previous Articles Next Articles
Yi Zhang1, 2, Shu Zhao1, Weiren Dong1, Suifen He3, Haihong Wang1, Lihua Zhang4, Yinjuan Tang5, Jiasong Guo2, Suiqun Guo2
Received:
2012-07-25
Revised:
2012-10-26
Online:
2013-01-25
Published:
2013-01-25
Contact:
Weiren Dong, M.D., Ph.D., Professor, Doctoral supervisor, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China, wrdong@163.com. Suiqun Guo, M.D., Ph.D., Professor, Department of Gynecology and Obstetrics, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong Province, China, guosq@fimmu.com.
About author:
Yi Zhang☆, M.D., Assistant researcher.
Yi Zhang, Shu Zhao, Weiren Dong, Suifen He, Haihong Wang, Lihua Zhang, Yinjuan Tang, Jiasong Guo, Suiqun Guo. Cloning and bioinformatical analysis of the N-terminus of the sonic hedgehog gene[J]. Neural Regeneration Research, 2013, 8(3): 258-263.
[1] Zardoya R, Abouheif E, Meyer A. Evolution and orthology of hedgehoggenes. Trends Genet. 1996;12(12):496–497.http://linkinghub.elsevier.com/retrieve/pii/S0168952596200149 [2] Francis-West P, Hill R. Uncoupling the role of sonic hedgehog in limb development: growth and specification. Sci Signal. 2008;1(26):34.http://stke.sciencemag.org/cgi/pmidlookup?view=short&pmid=18594116[3] Shikata Y, Okada T, Hashimoto M, et al. Ptch1-mediated dosage-dependent action of Shh signaling regulates neural progenitor development at late gestational stages. Dev Biol. 2011;349(2):147-159.http://linkinghub.elsevier.com/retrieve/pii/S0012-1606(10)01134-6[4]McMahon AP, Ingham PW, Tabin CJ. Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol. 2003;53:111-114.http://www.ncbi.nlm.nih.gov/pubmed/12509125[5]Palma V, Lim DA, Dahmane N, et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development. 2005;132(2):335-344.http://www.ncbi.nlm.nih.gov/pubmed?term=Sonic%20hedgehog%20controls%20stem%20cell%20behavior%20in%20the%20postnatal%20and%20adult%20brain.%20[6]Hammond R, Blaess S, Abeliovich A. Sonic Hedgehog Is a Chemoattractant for Midbrain Dopaminergic Axons. PLoS ONE. 2009;4(9):e7007.http://www.ncbi.nlm.nih.gov/pubmed?term=Sonic%20Hedgehog%20Is%20a%20Chemoattractant%20for%20Midbrain%20Dopaminergic%20Axons.com[7]Wu CL, Chen SD, Hwang CS, et al. Sonic hedgehog mediates BDNF-induced neuroprotection against mitochondrial inhibitor 3-nitropropionic acid. Biochem Biophys Res Commun. 2009;385(1):112-117.http://www.ncbi.nlm.nih.gov/pubmed?term=Sonic%20hedgehog%20mediates%20BDNF-induced%20neuroprotection%20against%20mitochondrial%20inhibitor%203-nitropropionic%20acid[8]Hashimoto M, Ishii K, Nakamura Y, et al. Neuroprotective effect of sonic hedgehog up-regulated in Schwann cells following sciatic nerve injury. J Neurochem. 2008; 107(4):918-927.http://dx.doi.org/10.1111/j.1471-4159.2008.05666.x[9]Bumcrot DA, Takada R, McMahon AP. Proteolytic processing yields two secreted forms of sonic hedgehog. Mol Cell Biol. 1995;15(4):2294-2303.http://mcb.asm.org/cgi/pmidlookup?view=long&pmid=7891723[10]Porter JA, Young KE, Beachy PA. Cholesterol modification of hedgehog signaling proteins in animal development. Science. 1996;274(5285):255-259.http://www.ncbi.nlm.nih.gov/pubmed/8824192[11]Currie P D, Ingham PW. Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish. Nature. 1996;382 (6590):452-455. %20type%20by%20a%20hedgehog-like%20protein%20in%20zebrafish.http://www.ncbi.nlm.nih.gov/pubmed?term=Induction%20of%20a%20specific%20muscle%20cell%20type%20by%20a%20hedgehog-like%20protein%20in%20zebrafish.[12]Herzog W, Zeng X, Lele Z, et al. Adenohypophysis formation in the zebrafish and its dependence on sonic hedgehog. Dev. Biol. 2003;254(1):3649.http://www.ncbi.nlm.nih.gov/pubmed?term=%20Adenohypophysis%20formation%20in%20the%20zebrafish%20and%20its%20dependence%20on%20sonic%20hedgehog.%20[13]Lewis KE, Eisen JS. Hedgehog signaling is required for primary motoneuron induction in zebrafish. Development. 2001;128(18):3485-3495.http://dev.biologists.org/cgi/pmidlookup?view=long&pmid=11566854[14]Scholpp S, Wolf O, Brand M, et al. Hedgehog signalling from the zona limitans intrathalamica orchestrates patterning of the zebrafish diencephalon. Development. 2006;133(5):855–864.http://dev.biologists.org/cgi/pmidlookup?view=long&pmid=16452095[15]Dassule HR, Lewis P, Bei M, et al. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development. 2000;127(22):4775-4785.http://dev.biologists.org/cgi/pmidlookup?view=long&pmid=11044393[16]P Wilson L, Maden M. The mechanisms of dorsoventral patterning in the vertebrate neural tube. Dev Biol. 2005;282(1):1-13.http://www.ncbi.nlm.nih.gov/pubmed/15936325[17] Kolpak A, Zhang J, Bao ZZ. Sonic hedgehog has a dual effect on the growth of retinal ganglion axons depending on its concentration. J Neurosci. 2005;25(13): 3432–3441.http://www.ncbi.nlm.nih.gov/pubmed?term=Sonic%20hedgehog%20has%20a%20dual%20effect%20on%20the%20growth%20of%20retinal%20ganglion%20axons%20depending%20on%20its%20concentration.[18] Placzek M, Tessier-Lavigne M, Yamada T, et al. Mesodermal control of neural cell identity: floor plate induction by the notochord. Science. 1990;250(4983):985-988.http://www.ncbi.nlm.nih.gov/pubmed/2237443[19]Aikin RA, Ayers KL, Thetond PP. The role of kinases in the Hedgehog signaling pathway. EMBO Reports. 2008;9(4):330-336.http://www.ncbi.nlm.nih.gov/pmc/articles/pmid/18379584/?tool=pubmed[20] Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by sonic hedgehog. Neuron. 1999;22(1):103-114. http://www.ncbi.nlm.nih.gov/pubmed/10027293[21]Ericson J, Morton S, Kawakami A, et al. Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell. 1996;87(4): 661-673.http://linkinghub.elsevier.com/retrieve/pii/S0092-8674(00)81386-0[22] Davies JE, Miller RH. Local sonic hedgehog signaling regulates oligodendrocyte precursor appearance in multiple ventricular zone domains in the chick metencephalon. Dev Biol. 2001;233(2):513-525. http://linkinghub.elsevier.com/retrieve/pii/S0012-1606(01)90224-6[23]Perez-Balaguer A, Puelles E, Wurst W, et al. Shh dependent and independent maintenance of basal midbrain. Mech Dev. 2009;126(5-6):301-313. http://www.ncbi.nlm.nih.gov/pubmed?term=%20Shh%20dependent%20and%20independent%20maintenance%20of%20basal%20midbrain.%20[24]Roussa E, Krieglstein K. Induction and specification of midbrain dopaminergic cells: focus on SHH, FGF8,and TGF-B. Cell Tissue Res. 2004;318(1):23-33. http://www.ncbi.nlm.nih.gov/pubmed?term=Induction%20and%20specification%20of%20midbrain%20dopaminergic%20cells%3A%20focus%20on%20SHH%2C%20FGF8%EF%BC%8Cand%20TGF-B.%20[25]Hynes M, Porter JA, Chiang C, et al. Induction of midbrain dopaminergic neurons by Sonic hedgehog. Neuron. 1995;15(1):35-44.http://www.ncbi.nlm.nih.gov/pubmed/7619528[26]Wang MZ, Jin P, Bumcrot DA, et al. Induction of dopaminergic neuron phenotype in the midbrain by sonic hedgehog protein. Nat Med. 1995;1(11):1184-1188. http://www.ncbi.nlm.nih.gov/pubmed/7584992[27]Yan Y, Yang D, Zarnowska ED, et al. Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells. 2005;23(6):781-790. http://www.ncbi.nlm.nih.gov/pubmed/15917474[28]Rafuse VF, Soundararajan P, Leopold C, et al. Neuroprotective properties of cultured neural progenitor cells are associated with the production of sonic hedgehog. Neuroscience. 2005;131(4):899-916. http://linkinghub.elsevier.com/retrieve/pii/S0306-4522(04)01122-4 [29]Pepinsky R.B, Zeng C, Wen D, et al. Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem. 1998;273(22):14037-14045.http://www.jbc.org/cgi/pmidlookup?view=long&pmid=9593755[30]Olanow CW, Kordower JH, Lang AE, et al. Dopaminergic transplantation for Parkinson’s disease: current status and future prospects. Ann Neurol. 2009; 66(5):591-596. http://dx.doi.org/10.1002/ana.21778[31]The Ministry of Science and Technology of the People’s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30.http://emice.nci.nih.gov/news/implementation-of-the-guide-for-the-care-and-use-of-laboratory-animals-eighth-edition[32] Lu G, Yu XB, Huang C, et al. Bioinformatics Analysis for the Structure and Function of Lactate Dehydrogenase from Schistosoma japonicum. Chin J Parasitol Parasit Dis. 2007;25(3):202-205.http://www.ncbi.nlm.nih.gov/pubmed?term=%20Bioinformatics%20Analysis%20for%20the%20Structure%20and%20Function%20of%20Lactate%20Dehydrogenase%20from%20Schistosoma%20japonicumhttp://www.ncbi.nlm.nih.gov/pubmed?term=%20Bioinformatics%20Analysis%20for%20the%20Structure%20and%20Function%20of%20Lactate%20Dehydrogenase%20from%20Schistosoma%20japonicum |
[1] | Hong Deng, Ye Zhang, Gai-Gai Li, Hai-Han Yu, Shuang Bai, Guang-Yu Guo, Wen-Liang Guo, Yang Ma, Jia-Hui Wang, Na Liu, Chao Pan, Zhou-Ping Tang. P2X7 receptor activation aggravates NADPH oxidase 2-induced oxidative stress after intracerebral hemorrhage [J]. Neural Regeneration Research, 2021, 16(8): 1582-1591. |
[2] | Guo-Yu Wang, Zhi-Jian Cheng, Pu-Wei Yuan, Hao-Peng Li, Xi-Jing He. Olfactory ensheathing cell transplantation alters the expression of chondroitin sulfate proteoglycans and promotes axonal regeneration after spinal cord injury [J]. Neural Regeneration Research, 2021, 16(8): 1638-1644. |
[3] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[4] | Li-Jian Zhang, Yao Chen, Lu-Xuan Wang, Xiao-Qing Zhuang He-Chun Xia. Identification of potential oxidative stress biomarkers for spinal cord injury in erythrocytes using mass spectrometry [J]. Neural Regeneration Research, 2021, 16(7): 1294-1301. |
[5] | Rong Li, Zu-Cheng Huang, Hong-Yan Cui, Zhi-Ping Huang, Jun-Hao Liu, Qing-An Zhu, Yong Hu. Utility of somatosensory and motor-evoked potentials in reflecting gross and fine motor functions after unilateral cervical spinal cord contusion injury [J]. Neural Regeneration Research, 2021, 16(7): 1323-1330. |
[6] | Zhong-Yue Lv, Ying Li, Jing Liu. Progress in clinical trials of stem cell therapy for cerebral palsy [J]. Neural Regeneration Research, 2021, 16(7): 1377-1382. |
[7] | Hui-Ling Wang, Fei-Lai Liu, Rui-Qing Li, Ming-Yue Wan, Jie-Ying Li, Jing Shi, Ming-Li Wu, Jun-Hua Chen, Wei-Juan Sun, Hong-Xia Feng, Wei Zhao, Jin Huang, Ren-Chao Liu, Wen-Xue Hao, Xiao-Dong Feng. Electroacupuncture improves learning and memory functions in a rat cerebral ischemia/reperfusion injury model through PI3K/Akt signaling pathway activation [J]. Neural Regeneration Research, 2021, 16(6): 1011-1016. |
[8] | Akira Nakashima, Takefumi Moriuchi, Daiki Matsuda, Takashi Hasegawa, Jirou Nakamura, Kimika Anan, Katsuya Satoh, Tomotaka Suzuki, Toshio Higashi, Kenichi Sugawara. Corticospinal excitability during motor imagery is diminished by continuous repetition-induced fatigue [J]. Neural Regeneration Research, 2021, 16(6): 1031-1036. |
[9] | Zi-Qi Shao, Shan-Shan Dou, Jun-Ge Zhu, Hui-Qing Wang, Chun-Mei Wang, Bao-Hua Cheng, Bo Bai. Apelin-13 inhibits apoptosis and excessive autophagy in cerebral ischemia/reperfusion injury [J]. Neural Regeneration Research, 2021, 16(6): 1044-1051. |
[10] | Qiu-Shi Gao, Ya-Han Zhang, Hang Xue, Zi-Yi Wu, Chang Li, Ping Zhao . Brief inhalation of sevoflurane can reduce glial scar formation after hypoxic-ischemic brain injury in neonatal rats [J]. Neural Regeneration Research, 2021, 16(6): 1052-1061. |
[11] | Muyue Yang, Zhen Yang, Pu Wang, Zhihui Sun. Current application and future directions of photobiomodulation in central nervous diseases [J]. Neural Regeneration Research, 2021, 16(6): 1177-1185. |
[12] | Yi-Hao Deng, Ling-Ling Dong, Yong-Jie Zhang, Xiao-Ming Zhao, Hong-Yun He. Enriched environment boosts the post-stroke recovery of neurological function by promoting autophagy [J]. Neural Regeneration Research, 2021, 16(5): 813-819. |
[13] | Yu Lei, Xin Zhang, Wei Ni, Heng Yang, Jia-Bin Su, Bin Xu, Liang Chen, Jin-Hua Yu, Yu-Xiang Gu , Ying Mao. Recognition of moyamoya disease and its hemorrhagic risk using deep learning algorithms: sourced from retrospective studies [J]. Neural Regeneration Research, 2021, 16(5): 830-835. |
[14] | Xue-Mei Zhang, Yuan-Jiao Ouyang, Bing-Qian Yu, Wei Li, Mei-Yu Yu, Jin-Yue Li, Zhuo-Min Jiao, Dan Yang, Na Li, Ying Shi, Yun-Yun Xu, Zhi-Jun He, Duo Wang, Hui Yue, Jin Fu. Therapeutic potential of dental pulp stem cell transplantation in a rat model of Alzheimer’s disease [J]. Neural Regeneration Research, 2021, 16(5): 893-898. |
[15] | Chao-Chao Yu, Chuan He, Yan-Jun Du, Shan Gao, Yuan-Fang Lin, Shu-Qin Wang, Li Wang, Jia Wang, Xue-Song Wang, Tao Jiang, Li-Hong Kong. Preventive electroacupuncture reduces cognitive deficits in a rat model of D-galactose-induced aging [J]. Neural Regeneration Research, 2021, 16(5): 916-923. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||