Neural Regeneration Research ›› 2012, Vol. 7 ›› Issue (34): 2713-2718.doi: 10.3969/j.issn.1673-5374.2012.34.009
Previous Articles Next Articles
Mingming Liu, Chuanhuang Weng, Hanping Xie, Wei Qin
Received:
2012-07-04
Revised:
2012-11-09
Online:
2012-12-05
Published:
2012-11-09
Contact:
Wei Qin, M.D., Associate professor, Southwest Hospital/Southwest Eye Hospital, Third Military Medical University of Chinese PLA, Chongqing 400038, China
weiqin0707@163.com
About author:
Mingming Liu★, Master, Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University of Chinese PLA, Chongqing 400038, China
Supported by:
This project was funded by the National Natural Science Foundation of China, No. 30772350.
Mingming Liu, Chuanhuang Weng, Hanping Xie, Wei Qin . Binocular form deprivation influences the visual cortex[J]. Neural Regeneration Research, 2012, 7(34): 2713-2718.
[1] Hubel DH, Wiesel TN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol. 1970;206(2):419-436.[2] Baroncelli L, Braschi C, Spolidoro M, et al. Nurturing brain plasticity: impact of environmental enrichment. Cell Death Differ. 2010;17(7):1092-1103. [3] Di Garbo A, Mainardi M, Chillemi S, et al. Environmental enrichment modulates cortico-cortical interactions in the mouse. PLoS One. 2011;6(9):e25285. [4] Bélanger MC, Di Cristo G. Sensory experience differentially modulates the mRNA expression of the polysialyltransferases ST8SiaII and ST8SiaIV in postnatal mouse visual cortex. PLoS One. 2011;6(9):e24874. [5] Hensch TK. Critical period regulation. Annu Rev Neurosci. 2004;27:549-579.[6] Kanonidou E. Amblyopia: a mini review of the literature. Int Ophthalmol. 2011;31(3):249-256. [7] Meng K, Li YH, Zhang L, et al. Ca2+-permeable AMPA receptors mediate induction of test pulse depression of naive synapses in rat visual cortical slices at early postnatal stage. Neuroscience. 2010;165(3):684-691. [8] Asrar S, Zhou Z, Ren W, et al. Ca(2+) permeable AMPA receptor induced long-term potentiation requires PI3/MAP kinases but not Ca/CaM-dependent kinase II. PLoS One. 2009;4(2):e4339. [9] Goel A, Xu LW, Snyder KP, et al. Phosphorylation of AMPA receptors is required for sensory deprivation- induced homeostatic synaptic plasticity. PLoS One. 2011; 6(3):e18264.[10] Sato MT, Tokunaga A, Kawai Y, et al. The effects of binocular suture and dark rearing on the induction of c-fos protein in the rat visual cortex during and after the critical period. Neurosci Res. 2000;36(3):227-233.[11] Giannakopoulos M, Kouvelas ED, Mitsacos A. Experience-dependent regulation of NMDA receptor subunit composition and phosphorylation in the retina and visual cortex. Invest Ophthalmol Vis Sci. 2010;51(4): 1817-1822. [12] Hensch TK. Critical period plasticity in local cortical circuits. Nat Rev Neurosci. 2005;6(11):877-888.[13] Golshani P, Warren RA, Jones EG. Progression of change in NMDA, non-NMDA, and metabotropic glutamate receptor function at the developing corticothalamic synapse. J Neurophysiol. 1998;80(1):143-154.[14] Kielland A, Heggelund P. AMPA receptor properties at the synapse between retinal afferents and thalamocortical cells in the dorsal lateral geniculate nucleus of the rat. Neurosci Lett. 2001;316(2):59-62.[15] He K, Lee A, Song L, et al. AMPA receptor subunit GluR1 (GluA1) serine-845 site is involved in synaptic depression but not in spine shrinkage associated with chemical long- term depression. J Neurophysiol. 2011;105(4): 1897-1907. [16] Kumar SS, Huguenard JR. Properties of excitatory synaptic connections mediated by the corpus callosum in the developing rat neocortex. J Neurophysiol. 2001;86(6): 2973-2985.[17] Liu X, Chen C. Different roles for AMPA and NMDA receptors in transmission at the immature retinogeniculate synapse. J Neurophysiol. 2008;99(2):629-643. [18] Bengoetxea H, Argandoña EG, Lafuente JV. Effects of visual experience on vascular endothelial growth factor expression during the postnatal development of the rat visual cortex. Cereb Cortex. 2008;18(7):1630-1639.[19] Argandoña EG, Bengoetxea H, Lafuente JV. Physical exercise is required for environmental enrichment to offset the quantitative effects of dark-rearing on the S-100beta astrocytic density in the rat visual cortex. J Anat. 2009; 215(2):132-140.[20] Gelfo F, De Bartolo P, Giovine A, et al. Layer and regional effects of environmental enrichment on the pyramidal neuron morphology of the rat. Neurobiol Learn Mem. 2009 May;91(4):353-65.[21] Koehnle TJ, Rinaman L. Early experience alters limbic forebrain Fos responses to a stressful interoceptive stimulus in young adult rats. Physiol Behav. 2010; 100(2):105-115. [22] The Ministry of Science and Technology of the People’s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30.[23] Krahe TE, Medina AE. Activation of NMDA receptors is necessary for the recovery of cortical binocularity. J Neurophysiol. 2010;103(5):2700-2706. [24] Wang WF, Kiyosawa M, Ishiwata K, et al. Glucose metabolism in the visual structures of rat monocularly deprived by eyelid suture after postnatal eye opening. Jpn J Ophthalmol. 2005;49(1):6-11.[25] Fathollahi Y, Salami M. The role of N-methyl-D-aspartate receptors in synaptic plasticity of rat visual cortex in vitro: effect of sensory experience. Neurosci Lett. 2001;306(3): 149-152.[26] Tsurugizawa T, Uematsu A, Uneyama H, et al. Effects of isoflurane and alpha-chloralose anesthesia on BOLD fMRI responses to ingested L-glutamate in rats. Neuroscience. 2010;165(1):244-251.[27] Wang Y, Neubauer FB, Lüscher HR, et al. GABAB receptor-dependent modulation of network activity in the rat prefrontal cortex in vitro. Eur J Neurosci. 2010;31(9): 1582-1594.[28] Qin W, Yin ZQ, Wang S, et al. Effects of binocular form deprivation on the excitatory post-synaptic currents mediated by N-methyl-D-aspartate receptors in rat visual cortex. Clin Experiment Ophthalmol. 2004;32(3):289-293.[29] Cheetham CE, Fox K. Presynaptic development at L4 to l2/3 excitatory synapses follows different time courses in visual and somatosensory cortex. J Neurosci. 2010;30(38): 12566-12571.[30] McCoy PA, McMahon LL. Sympathetic sprouting in visual cortex stimulated by cholinergic denervation rescues expression of two forms of long-term depression at layer 2/3 synapses. Neuroscience. 2010;168(3):591-604.[31] Osanai M, Tanaka S, Takeno Y, et al. Spatiotemporal properties of the action potential propagation in the mouse visual cortical slice analyzed by calcium imaging. PLoS One. 2010;5(10):e13738.[32] Ali AB, Bannister AP, Thomson AM. Robust correlations between action potential duration and the properties of synaptic connections in layer 4 interneurones in neocortical slices from juvenile rats and adult rat and cat. J Physiol. 2007;580(Pt 1):149-169. [33] Jiang B, Huang S, de Pasquale R, et al. The maturation of GABAergic transmission in visual cortex requires endocannabinoid-mediated LTD of inhibitory inputs during a critical period. Neuron. 2010;66(2):248-259.[34] Runyan CA, Schummers J, Van Wart A, et al. Response features of parvalbumin-expressing interneurons suggest precise roles for subtypes of inhibition in visual cortex. Neuron. 2010;67(5):847-857. |
[1] | Yu Li, Ping-Ping Shen, Bin Wang. Induced pluripotent stem cell technology for spinal cord injury: a promising alternative therapy [J]. Neural Regeneration Research, 2021, 16(8): 1500-1509. |
[2] | Sara Saffari, Tiam M. Saffari, Dietmar J. O. Ulrich, Steven E. R. Hovius, Alexander Y. Shin. The interaction of stem cells and vascularity in peripheral nerve regeneration [J]. Neural Regeneration Research, 2021, 16(8): 1510-1517. |
[3] | Ci Li, Song-Yang Liu, Wei Pi, Pei-Xun Zhang. Cortical plasticity and nerve regeneration after peripheral nerve injury [J]. Neural Regeneration Research, 2021, 16(8): 1518-1523. |
[4] | Shi-Qin Lv, Wutian Wu. ISP and PAP4 peptides promote motor functional recovery after peripheral nerve injury [J]. Neural Regeneration Research, 2021, 16(8): 1598-1605. |
[5] | Guo-Yu Wang, Zhi-Jian Cheng, Pu-Wei Yuan, Hao-Peng Li, Xi-Jing He. Olfactory ensheathing cell transplantation alters the expression of chondroitin sulfate proteoglycans and promotes axonal regeneration after spinal cord injury [J]. Neural Regeneration Research, 2021, 16(8): 1638-1644. |
[6] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[7] | Ayaka Sugeno, Wenhui Piao, Miki Yamazaki, Kiyofumi Takahashi, Koji Arikawa, Hiroko Matsunaga, Masahito Hosokawa, Daisuke Tominaga, Yoshio Goshima, Haruko Takeyama, Toshio Ohshima. Cortical transcriptome analysis after spinal cord injury reveals the regenerative mechanism of central nervous system in CRMP2 knock-in mice [J]. Neural Regeneration Research, 2021, 16(7): 1258-1265. |
[8] | Rui-Lin Zhu, Yuan Fang, Hong-Hua Yu, Dong F. Chen, Liu Yang, Kin-Sang Cho. Absence of ephrin-A2/A3 increases retinal regenerative potential for Müller cells in Rhodopsin knockout mice [J]. Neural Regeneration Research, 2021, 16(7): 1317-1322. |
[9] | Rong Li, Zu-Cheng Huang, Hong-Yan Cui, Zhi-Ping Huang, Jun-Hao Liu, Qing-An Zhu, Yong Hu. Utility of somatosensory and motor-evoked potentials in reflecting gross and fine motor functions after unilateral cervical spinal cord contusion injury [J]. Neural Regeneration Research, 2021, 16(7): 1323-1330. |
[10] | Zhong-Yue Lv, Ying Li, Jing Liu. Progress in clinical trials of stem cell therapy for cerebral palsy [J]. Neural Regeneration Research, 2021, 16(7): 1377-1382. |
[11] | Zi-Qi Shao, Shan-Shan Dou, Jun-Ge Zhu, Hui-Qing Wang, Chun-Mei Wang, Bao-Hua Cheng, Bo Bai. Apelin-13 inhibits apoptosis and excessive autophagy in cerebral ischemia/reperfusion injury [J]. Neural Regeneration Research, 2021, 16(6): 1044-1051. |
[12] | Qiu-Shi Gao, Ya-Han Zhang, Hang Xue, Zi-Yi Wu, Chang Li, Ping Zhao . Brief inhalation of sevoflurane can reduce glial scar formation after hypoxic-ischemic brain injury in neonatal rats [J]. Neural Regeneration Research, 2021, 16(6): 1052-1061. |
[13] | Jian Zhang, Ren-Jie Wang, Miao Chen, Xiao-Yin Liu, Ke Ma, Hui-You Xu, Wu-Sheng Deng, Yi-Chao Ye, Wei-Xin Li, Xu-Yi Chen, Hong-Tao Sun. Collagen/heparan sulfate porous scaffolds loaded with neural stem cells improve neurological function in a rat model of traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(6): 1068-1077. |
[14] | Yu-Xuan Wu, Hao Ma, Jian-Lan Wang, Wei Qu. Production of chitosan scaffolds by lyophilization or electrospinning: which is better for peripheral nerve regeneration? [J]. Neural Regeneration Research, 2021, 16(6): 1093-1098. |
[15] | Yuan Liu, Richard K. Lee. Cell transplantation to replace retinal ganglion cells faces challenges – the Switchboard Dilemma [J]. Neural Regeneration Research, 2021, 16(6): 1138-1141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||