Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (1): 6-12.doi: 10.3969/j.issn.1673-5374.2013.01.001
Yunxia Li, Qiang Guan, Yuhui Chen, Hongjie Han, Wuchao Liu, Zhiyu Nie
Online:
2013-01-05
Published:
2013-01-05
Contact:
Zhiyu Nie, M.D., Professor, Chief physician, Department of Neurology, Shanghai Tongji Hospital, Tongji University, School of Medicine, Shanghai 200065, China, snowlotus0000@163.com.
About author:
Yunxia Li☆, M.D., Associate chief physician.
Supported by:
This study was funded by Shanghai Municipal Health Bureau, No. KPB-WSJ1004 and the National Natural Science Foundation of China, No. 81200971.
Yunxia Li, Qiang Guan, Yuhui Chen, Hongjie Han, Wuchao Liu, Zhiyu Nie. Transferrin receptor and ferritin-H are developmentally regulated in oligodendrocyte lineage cells[J]. Neural Regeneration Research, 2013, 8(1): 6-12.
[1] Benarroch EE. Brain iron homeostasis and neurodegenerative disease. Neurology. 2009;72(16): 1436-1440.[2] Connor JR, Menzies SL. Relationship of iron to oligodendrocytes and myelination. Glia. 1996;17(2):83-93.[3] Jougleux JL, Rioux FM, Church MW, et al. Mild maternal iron deficiency anemia during pregnancy and lactation in guinea pigs causes abnormal auditory function in the offspring. J Nutr. 2011;141(7):1390-1395.[4] Taylor EM, Morgan EH. Developmental changes in transferrin and iron uptake by the brain in the rat. Brain Res Dev Brain Res. 1990;55(1):35-42.[5] Wu LL, Zhang L, Shao J, et al. Effect of perinatal iron deficiency on myelination and associated behaviors in rat pups. Behav Brain Res. 2008;188(2):263-270.[6] Algarín C, Peirano P, Garrido M, et al. Iron deficiency anemia in infancy: long-lasting effects on auditory and visual system functioning. Pediatr Res. 2003;53(2): 217-223.[7] Ortiz E, Pasquini JM, Thompson K, et al. Effect of manipulation of iron storage, transport, or availability on myelin composition and brain iron content in three different animal models. J Neurosci Res. 2004;77(5): 681-689.[8] Espinosa-Jeffrey A, Kumar S, Zhao PM, et al. Transferrin regulates transcription of the MBP gene and its action synergizes with IGF-1 to enhance myelinogenesis in the md rat. Dev Neurosci. 2002;24(2-3):227-241.[9] Han J, Day JR, Connor JR, et al. Gene expression of transferrin and transferrin receptor in brains of control vs. iron-deficient rats. Nutr Neurosci. 2003;6(1):1-10.[10] Yang WM, Jung KJ, Lee MO, et al. Transient expression of iron transport proteins in the capillary of the developing rat brain. Cell Mol Neurobiol. 2011;31(1):93-99.[11] Schonberg DL, Goldstein EZ, Sahinkaya FR, et al. Ferritin stimulates oligodendrocyte genesis in the adult spinal cord and can be transferred from macrophages to NG2 cells in vivo. J Neurosci. 2012;32(16):5374-5384.[12] Schulz K, Kroner A, David S. Iron efflux from astrocytes plays a role in remyelination. J Neurosci. 2012;32(14): 4841-4847.[13] Asakura K, Miller DJ, Pease LR, et al. Targeting of IgMkappa antibodies to oligodendrocytes promotes CNS remyelination. J Neurosci. 1998;18(19):7700-7708.[14] Canoll PD, Musacchio JM, Hardy R, et al. GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors. Neuron. 1996;17(2):229-243.[15] Liu X, Lu Y, Zhang Y, et al. Slit2 regulates the dispersal of oligodendrocyte precursor cells via Fyn/RhoA signaling. J Biol Chem. 2012;287(21):17503-17516. [16] Chitambar CR, Wereley JP. Transferrin receptor- dependent and -independent iron transport in gallium- resistant human lymphoid leukemic cells. Blood. 1998; 91(12):4686-4693.[17] Kürekçi AE, Sarici SU, Karaoglu A, et al. Effects of iron deficiency versus iron deficiency anemia on brainstem auditory evoked potentials in infancy. Turk J Pediatr. 2006; 48(4):334-339.[18] Morath DJ, Mayer-Pröschel M. Iron deficiency during embryogenesis and consequences for oligodendrocyte generation in vivo. Dev Neurosci. 2002;24(2-3):197-207.[19] Badaracco ME, Ortiz EH, Soto EF, et al. Effect of transferrin on hypomyelination induced by iron deficiency. J Neurosci Res. 2008;86(12):2663-2673.[20] Todorich B, Pasquini JM, Garcia CI, et al. Oligodendrocytes and myelination: the role of iron. Glia. 2009;57(5):467-478.[21] Espinosa de los Monteros A, Foucaud B. Effect of iron and transferrin on pure oligodendrocytes in culture; characterization of a high-affinity transferrin receptor at different ages. Brain Res. 1987;432(1):123-130.[22] Moos T, Rosengren Nielsen T, Skjørringe T, et al. Iron trafficking inside the brain. J Neurochem. 2007;103(5): 1730-1740. [23] Hulet SW, Menzies S, Connor JR. Ferritin binding in the developing mouse brain follows a pattern similar to myelination and is unaffected by the jimpy mutation. Dev Neurosci. 2002;24(2-3):208-213.[24] Hulet SW, Heyliger SO, Powers S, et al. Oligodendrocyte progenitor cells internalize ferritin via clathrin-dependent receptor mediated endocytosis. J Neurosci Res. 2000; 61(1):52-60.[25] Todorich B, Olopade JO, Surguladze N, et al. The mechanism of vanadium-mediated developmental hypomyelination is related to destruction of oligodendrocyte progenitors through a relationship with ferritin and iron. Neurotox Res. 2011;19(3):361-373. [26] Todorich B, Zhang X, Connor JR. H-ferritin is the major source of iron for oligodendrocytes. Glia. 2011;59(6): 927-935.[27] Rosato-Siri MV, Badaracco ME, Ortiz EH, et al. Oligodendrogenesis in iron-deficient rats: effect of apotransferrin. J Neurosci Res. 2010;88(8):1695-1707.[28] The Ministry of Science and Technology of the People’s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30. [29] McCarthy KD, de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980;85(3):890-902.[30] Canoll PD, Musacchio JM, Hardy R, et al. GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors. Neuron. 1996;17(2):229-243.[31] Barres BA, Lazar MA, Raff MC. A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development. 1994; 120(5):1097-1108.[32] Xiao L, Guo D, Hu C, et al. Diosgenin promotes oligodendrocyte progenitor cell differentiation through estrogen receptor-mediated ERK1/2 activation to accelerate remyelination. Glia. 2012;60(7):1037-1052. [33] Wang W, Gao XF, Xiao L, et al. K(V)7/KCNQ channels are functionally expressed in oligodendrocyte progenitor cells. PLoS One. 2011;6(7):e21792. [34] Nakamura Y, Nakamichi N, Takarada T, et al. Transferrin receptor-1 suppresses neurite outgrowth in neuroblastoma Neuro2A cells. Neurochem Int. 2012;60(5): 448-457. [35] Du F, Qian C, Qian ZM, et al. Hepcidin directly inhibits transferrin receptor 1 expression in astrocytes via a cyclic AMP-protein kinase A pathway. Glia. 2011;59(6):936-945. [36] Singh A, Isaac AO, Luo X, et al. Abnormal brain iron homeostasis in human and animal prion disorders. PLoS Pathog. 2009;5(3):e1000336. |
[1] | Gao-Jing Xu, Qun Zhang, Si-Yue Li, Yi-Tong Zhu, Ke-Wei Yu, Chuan-Jie Wang, Hong-Yu Xie, Yi Wu. Environmental enrichment combined with fasudil treatment inhibits neuronal death in the hippocampal CA1 region and ameliorates memory deficits [J]. Neural Regeneration Research, 2021, 16(8): 1460-1466. |
[2] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[3] | Yu-Ye Wang, He-Yu Zhang, Wen-Juan Jiang, Fang Liu, Lei Li, Shu-Min Deng, Zhi-Yi He, Yan-Zhe Wang. Genetic polymorphisms in pri-let-7a-2 are associated with ischemic stroke risk in a Chinese Han population from Liaoning, China: a case-control study [J]. Neural Regeneration Research, 2021, 16(7): 1302-1307. |
[4] | Ying Li, Juan-Xian Cheng, Hai-Hong Yang, Li-Ping Chen, Feng-Jiao Liu, Yan Wu, Ming Fan, Hai-Tao Wu. Transferrin receptor 1 plays an important role in muscle development and denervation-induced muscular atrophy [J]. Neural Regeneration Research, 2021, 16(7): 1308-1316. |
[5] | Han Deng, Shang Liu, Dong Pan, Yi Jia, Ze-Gang Ma. Myricetin reduces cytotoxicity by suppressing hepcidin expression in MES23.5 cells [J]. Neural Regeneration Research, 2021, 16(6): 1105-1110. |
[6] | Marika Premoli, Maurizio Memo, Sara Anna Bonini. Ultrasonic vocalizations in mice: relevance for ethologic and neurodevelopmental disorders studies [J]. Neural Regeneration Research, 2021, 16(6): 1158-1167. |
[7] | Xiao-Qing Cheng, Wen-Jing Xu, Xiao Ding, Gong-Hai Han, Shuai Wei, Ping Liu, Hao-Ye Meng, Ai-Jia Shang, Yu Wang, Ai-Yuan Wang. Bioinformatic analysis of cytokine expression in the proximal and distal nerve stumps after peripheral nerve injury [J]. Neural Regeneration Research, 2021, 16(5): 878-884. |
[8] | Mariam Rizk, Justin Vu, Zhi Zhang. Impact of pediatric traumatic brain injury on hippocampal neurogenesis [J]. Neural Regeneration Research, 2021, 16(5): 926-933. |
[9] | Magdalini Tsintou, Kyriakos Dalamagkas, Tara L. Moore, Yogesh Rathi, Marek Kubicki, Douglas L. Rosene, Nikos Makris. The use of hydrogel-delivered extracellular vesicles in recovery of motor function in stroke: a testable experimental hypothesis for clinical translation including behavioral and neuroimaging assessment approaches [J]. Neural Regeneration Research, 2021, 16(4): 605-613. |
[10] | Gilad Levy, Boaz Barak. Postnatal therapeutic approaches in genetic neurodevelopmental disorders [J]. Neural Regeneration Research, 2021, 16(3): 414-422. |
[11] | Joseph A. Shehadi, Steven M. Elzein, Paul Beery, M. Chance Spalding, Michelle Pershing. Combined administration of platelet rich plasma and autologous bone marrow aspirate concentrate for spinal cord injury: a descriptive case series [J]. Neural Regeneration Research, 2021, 16(2): 362-366. |
[12] | Qilin Guo, Anja Scheller, Wenhui Huang. Progenies of NG2 glia: what do we learn from transgenic mouse models ? [J]. Neural Regeneration Research, 2021, 16(1): 43-48. |
[13] | Mariana Toricelli, Arthur Antonio Ruiz Pereira, Guilherme Souza Abrao, Helena Nascimento Malerba, Julia Maia, Hudson Sousa Buck, Tania Araujo Viel . Mechanisms of neuroplasticity and brain degeneration: strategies for protection during the aging process [J]. Neural Regeneration Research, 2021, 16(1): 58-67. |
[14] | Ke-Wei Yu, Chuan-Jie Wang, Yi Wu, Yu-Yang Wang , Nian-Hong Wang , Shen-Yi Kuang , Gang Liu , Hong-Yu Xie , Cong-Yu Jiang , Jun-Fa Wu. An enriched environment increases the expression of fibronectin type III domain-containing protein 5 and brain-derived neurotrophic factor in the cerebral cortex of the ischemic mouse brain [J]. Neural Regeneration Research, 2020, 15(9): 1671-1677. |
[15] | Li-Xin He, Lily Wan, Wei Xiang, Jian-Ming Li, An-Hua Pan, Da-Hua Lu. Synaptic development of layer V pyramidal neurons in the prenatal human prefrontal neocortex: a Neurolucida-aided Golgi study [J]. Neural Regeneration Research, 2020, 15(8): 1490-1495. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||