Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (2): 101-110.doi: 10.3969/j.issn.1673-5374.2013.02.001
Zhengang Sun1, 2, Lingyun Hu2, 3, Yimin Wen2, 4, Keming Chen4, Zhenjuan Sun5, Haiyuan Yue2, Chao Zhang2
Received:
2012-07-20
Revised:
2012-11-10
Online:
2013-01-15
Published:
2013-01-15
Contact:
Yimin Wen, Chief physician, Professor, Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China; Department of Spine Surgery, Lanzhou General Hospital of Lanzhou Military Region, Lanzhou 730050, Gansu Province, China, wenyimin007@163.com.
About author:
Zhengang Sun★, Master, Attending physician.
Zhengang Sun, Lingyun Hu, Yimin Wen, Keming Chen, Zhenjuan Sun, Haiyuan Yue, Chao Zhang. Adenosine triphosphate promotes locomotor recovery after spinal cord injury by activating mammalian target of rapamycin pathway in rats[J]. Neural Regeneration Research, 2013, 8(2): 101-110.
1. Wang B, Xiao Z, Chen B et al. Nogo-66 promotes the differentiation of neural progenitors into astroglial lineage cells through mTOR-STAT3 pathway. PLoS One. 2008;3:e1856. http://www.ncbi.nlm.nih.gov/pubmed?term=Nogo-66%20promotes%20the%20differentiation%20of%20neural%20progenitors%20into%20astroglial%20lineage%20cells%20through%202.. Sango K, Yanagisawa H, Komuta Y, et al. Neuroprotective properties of ciliary neurotrophic factor for cultured adult rat dorsal root ganglion neurons. Histochem Cell Biol. 2008;130:669-679. http://www.ncbi.nlm.nih.gov/pubmed?term=Neuroprotective%20properties%20of%20ciliary%20neurotrophic%20factor%20for%20cultured%20adult%20rat%20dorsal%20root%20ganglion%20neurons.3. Hu LY, Sun ZG, Wen YM, et al. ATP-mediated protein kinase B Akt/mammalian target of rapamycin mTOR/p70 ribosomal S6 protein p70S6 kinase signaling pathway activation promotes improvement of locomotor function after spinal cord injury in rats. Neuroscience. 2010;169:1046-1062. http://www.ncbi.nlm.nih.gov/pubmed?term=ATP-mediated%20protein%20kinase%20B%20Akt%2Fmammalian%20target%20of%20rapamycin%20mTOR%2Fp70%20ribosomal%20S6%20protein%204. Yu W, Chen Z, Zhang J, et al. Critical role of phosphoinositide 3-kinase cascade in adipogenesis of human mesenchymal stem cells. Mol Cell Biochem. 2008;310:11-18. http://www.ncbi.nlm.nih.gov/pubmed?term=Critical%20role%20of%20phosphoinositide%203-kinase%20cascade%20in%20adipogenesis%20of%20human%20mesenchymal%20stem%20cells5. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124:471-484. http://www.ncbi.nlm.nih.gov/pubmed/164696956. Dominguez E, Mauborgne A, Mallet J, et al. SOCS3-mediated blockade of JAK/STAT3 signaling pathway reveals its major contribution to spinal cord neuroinflammation and mechanical allodynia after peripheral nerve injury. J Neurosci. 2010;30:5754-5766. http://www.ncbi.nlm.nih.gov/pubmed?term=%20SOCS3-mediated%20blockade%20of%20JAK%2FSTAT3%20signaling%20pathway%20reveals%20its%20major%20contribution%20to%20spinal%20cord%20neuroinflammation%20and%20mechanical%20allodynia%20after%20peripheral%20nerve%20injury7. Yu Y, Ren W, Ren B. Expression of signal transducers and activator of transcription 3 (STAT3) determines differentiation of olfactory bulb cells. Mol Cell Biochem. 2009;320:101-108. http://www.ncbi.nlm.nih.gov/pubmed?term=Expression%20of%20signal%20transducers%20and%20activator%20of%20transcription%203%20(STAT3)%20determines%20differentiation%20of%20olfactory%20bulb%20cells8. Cotrina ML, Nedergaard M. Physiological and pathological functions of P2X7 receptor in the spinal cord. Purinergic Signal.2009;5:223-232. http://www.ncbi.nlm.nih.gov/pubmed/192059279. Gerasimovskaya EV, Tucker DA, Weiser-Evans M, et al. Extracellular ATP-induced proliferation of adventitial fibroblasts requires phosphoinositide 3-kinase, Akt, mammalian target of rapamycin, and p70 S6 kinase signaling pathways. J Biol Chem. 2005;280:1838-1848. http://www.ncbi.nlm.nih.gov/pubmed?term=Extracellular%20ATP-induced%20proliferation%20of%20adventitial%20fibroblasts%20requires%20phosphoinositide%203-kinase%2C%20Akt%2C%20mammalian%20target%20of%20rapamycin%2C%20and%20p70%20S6%20kinase%20signaling%20pathways10. Neary JT. Protein kinase signaling cascades in CNS trauma. IUBMB Life 2005;57:711-718. http://www.ncbi.nlm.nih.gov/pubmed/1651196311. Dalziel HH, Westfall DP. Receptors for adenine nucleotides and nucleosides: subclassification, distribution, and molecular characterization. Pharmacol Rev. 1994;46:449-466. http://www.ncbi.nlm.nih.gov/pubmed?term=Receptors%20for%20adenine%20nucleotides%20and%20nucleosides%3A%20subclassification%2C%20distribution%2C%20and%20molecular%20characterization12. Andres RH, Ducray AD, Schlattner U, et al. Functions and effects of creatine in the central nervous system. Brain Res Bull. 2008;76:329-343. http://www.ncbi.nlm.nih.gov/pubmed/1850230713. Shin DH, Min HY, El-Naggar AK, et al. Akt/mTOR counteract the antitumor activities of cixutumumab, an anti-insulin-like growth factor I receptor monoclonal antibody. Mol Cancer Ther. 2011;10:2437-2448. http://www.ncbi.nlm.nih.gov/pubmed?term=Akt%2FmTOR%20counteract%20the%20antitumor%20activities%20of%20cixutumumab%2C%20an%20anti-insulin-like%20growth%20factor%20I%20receptor%20monoclonal%20antibody14. Dominguez E, Rivat C, Pommier B, et al. JAK/STAT3 pathway is activated in spinal cord microglia after peripheral nerve injury and contributes to neuropathic pain development in rat. J Neurochem. 2008;107:50-60. http://www.ncbi.nlm.nih.gov/pubmed?term=JAK%2FSTAT3%20pathway%20is%20activated%20in%20spinal%20cord%20microglia%20after%20peripheral%20nerve%20injury%20and%20contributes%20to%20neuropathic%20pain%20development%20in%20rat.%2015 Dunlop EA, Tee AR. Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. Cell Signal. 2009;21:827-835. http://www.ncbi.nlm.nih.gov/pubmed?term=%20Mammalian%20target%20of%20rapamycin%20complex%201%3A%20signalling%20inputs%2C%20substrates%20and%20feedback%20mechanisms16. Miyazaki M, Esser KA. Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals. J Appl Physiol. 2009;106:1367-1373. http://www.ncbi.nlm.nih.gov/pubmed/1903689517. Swiech L, Perycz M, Malik A,et al. Role of mTOR in physiology and pathology of the nervous system. Biochim Biophys Acta. 2008;1784:116-132. http://www.ncbi.nlm.nih.gov/pubmed/1791360018. Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006;22:159-168. http://www.ncbi.nlm.nih.gov/pubmed?term=Prolonged%20rapamycin%20treatment%20inhibits%20mTORC2%20assembly%20and%20Akt%2FPKB19. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12:9-22. http://www.ncbi.nlm.nih.gov/pubmed/1761343320. Grider MH, Park D, Spencer DM, et al. Lipid raft-targeted Akt promotes axonal branching and growth cone expansion via mTOR and Rac1, respectively. J Neurosci Res. 2009;87:3033-3042. http://www.ncbi.nlm.nih.gov/pubmed?term=%20Lipid%20raft-targeted%20Akt%20promotes%20axonal%20branching%20and%20growth%20cone%20expansion%20via%20mTOR%20and%20Rac1%2C%20respectively21. Memmott RM, Dennis PA. Akt-dependent and -independent mechanisms of mTOR regulation in cancer. Cell Signal. 2009;21:656-664. http://www.ncbi.nlm.nih.gov/pubmed?term=Akt-dependent%20and%20-independent%20mechanisms%20of%20mTOR%20regulation%20in%20cancer22. Read DE, Gorman AM. Involvement of Akt in neurite outgrowth. Cell Mol Life Sci. 2009;66:2975-2984. http://www.ncbi.nlm.nih.gov/pubmed/1950404423. Narayanan SP, Flores AI, Wang F, et al. Akt signals through the mammalian target of rapamycin pathway to regulate CNS myelination. J Neurosci. 2009;29:6860-6870. http://www.ncbi.nlm.nih.gov/pubmed?term=Akt%20signals%20through%20the%20mammalian%20target%20of%20rapamycin%20pathway%20to%20regulate%20CNS%20myelination24. Fitch MT, Silver J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol. 2008;209:294-301. http://www.ncbi.nlm.nih.gov/pubmed?term=CNS%20injury%2C%20glial%20scars%2C%20and%20inflammation%3A%20Inhibitory%20extracellular%20matrices%20and%20regeneration%20failure25. Inoue K, Koizumi S, Tsuda M. The role of nucleotides in the neuron--glia communication responsible for the brain functions. J Neurochem. 2007;102:1447-1458. http://www.ncbi.nlm.nih.gov/pubmed?term=%20The%20role%20of%20nucleotides%20in%20the%20neuron--glia%20communication%20responsible%20for%20the%20brain%20functions26. Rubinsztein DC, Gestwicki JE, Murphy LO, et al. Potential therapeutic applications of autophagy. Nat Rev Drug Discov. 2007;6:304-312. http://www.ncbi.nlm.nih.gov/pubmed/1739613527. Qiao L, Wong BC. Targeting apoptosis as an approach for gastrointestinal cancer therapy. Drug Resist Updat. 2009;12:55-64. http://www.ncbi.nlm.nih.gov/pubmed/1927889628. Williams A, Sarkar S, Cuddon P, et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat Chem Biol. 2008;4:295-305. http://www.ncbi.nlm.nih.gov/pubmed?term=%20Novel%20targets%20for%20Huntington's%20disease%20in%20an%20mTOR-independent%20autophagy%20pathway.29. Peng W, Cotrina ML, Han X, et al. Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proc Natl Acad Sci U S A. 2009;106:12489-12493. http://www.ncbi.nlm.nih.gov/pubmed?term=Systemic%20administration%20of%20an%20antagonist%20of%20the%20ATP-sensitive%20receptor%20P2X7%20improves%20recovery%20after%20spinal%20cord%20injury30.The Ministry of Science and Technology of the People's Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30.http://www.most.gov.cn/fggw/zfwj/zfwj2006/zf06wj/zf06bfw/200609/t20060930_54196.htm31. Meikle L, Pollizzi K, Egnor A, et al. Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci. 2008;28:5422-5432. http://www.ncbi.nlm.nih.gov/pubmed?term=Response%20of%20a%20neuronal%20model%20of%20tuberous%20sclerosis%20to%20mammalian%20target%20of%20rapamycin%20(mTOR)%20inhibitors%3A%20effects%20on%20mTORC1%20and%20Akt%20signaling%20lead%20to%20improved%20survival%20and%20function.32. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12:1-21. http://www.ncbi.nlm.nih.gov/pubmed/7783230 |
[1] | Yu Li, Ping-Ping Shen, Bin Wang. Induced pluripotent stem cell technology for spinal cord injury: a promising alternative therapy [J]. Neural Regeneration Research, 2021, 16(8): 1500-1509. |
[2] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[3] | Ayaka Sugeno, Wenhui Piao, Miki Yamazaki, Kiyofumi Takahashi, Koji Arikawa, Hiroko Matsunaga, Masahito Hosokawa, Daisuke Tominaga, Yoshio Goshima, Haruko Takeyama, Toshio Ohshima. Cortical transcriptome analysis after spinal cord injury reveals the regenerative mechanism of central nervous system in CRMP2 knock-in mice [J]. Neural Regeneration Research, 2021, 16(7): 1258-1265. |
[4] | Dulce Parra-Villamar, Liliana Blancas-Espinoza, Elisa Garcia-Vences, Juan Herrera-García, Adrian Flores-Romero, Alberto Toscano-Zapien, Jonathan Vilchis Villa, Rodríguez Barrera-Roxana, Soria Zavala Karla, Antonio Ibarra, Raúl Silva-García. Neuroprotective effect of immunomodulatory peptides in rats with traumatic spinal cord injury [J]. Neural Regeneration Research, 2021, 16(7): 1273-1280. |
[5] | Li-Jian Zhang, Yao Chen, Lu-Xuan Wang, Xiao-Qing Zhuang He-Chun Xia. Identification of potential oxidative stress biomarkers for spinal cord injury in erythrocytes using mass spectrometry [J]. Neural Regeneration Research, 2021, 16(7): 1294-1301. |
[6] | Rong Li, Zu-Cheng Huang, Hong-Yan Cui, Zhi-Ping Huang, Jun-Hao Liu, Qing-An Zhu, Yong Hu. Utility of somatosensory and motor-evoked potentials in reflecting gross and fine motor functions after unilateral cervical spinal cord contusion injury [J]. Neural Regeneration Research, 2021, 16(7): 1323-1330. |
[7] | Yansheng Liu, Jia-Xin Xie, Fang Niu, Zhexi Xu, Pengju Tan, Caihong Shen, Hongkun Gao, Song Liu, Zhengwen Ma, Kwok-Fai So, Wutian Wu, Chen Chen, Sujuan Gao, Xiao-Ming Xu, Hui Zhu. Surgical intervention combined with weight-bearing walking training improves neurological recoveries in 320 patients with clinically complete spinal cord injury: a prospective self-controlled study [J]. Neural Regeneration Research, 2021, 16(5): 820-829. |
[8] | Mariam Rizk, Justin Vu, Zhi Zhang. Impact of pediatric traumatic brain injury on hippocampal neurogenesis [J]. Neural Regeneration Research, 2021, 16(5): 926-933. |
[9] | Magdalini Tsintou, Kyriakos Dalamagkas, Tara L. Moore, Yogesh Rathi, Marek Kubicki, Douglas L. Rosene, Nikos Makris. The use of hydrogel-delivered extracellular vesicles in recovery of motor function in stroke: a testable experimental hypothesis for clinical translation including behavioral and neuroimaging assessment approaches [J]. Neural Regeneration Research, 2021, 16(4): 605-613. |
[10] | Lindsey H. Forbes, Melissa R. Andrews. Advances in human stem cell therapies: pre-clinical studies and the outlook for central nervous system regeneration [J]. Neural Regeneration Research, 2021, 16(4): 614-617. |
[11] | Jayden Clark, Zhendan Zhu, Jyoti Chuckowree, Tracey Dickson, Catherine Blizzard. Efficacy of epothilones in central nervous system trauma treatment: what has age got to do with it? [J]. Neural Regeneration Research, 2021, 16(4): 618-620. |
[12] | Ke-Xue Zhang, Jia-Jia Zhao, Wei Chai, Ji-Ying Chen. Synaptic remodeling in mouse motor cortex after spinal cord injury [J]. Neural Regeneration Research, 2021, 16(4): 744-749. |
[13] | Lu-Xia Ye, Ning-Chen An, Peng Huang, Duo-Hui Li, Zhi-Long Zheng, Hao Ji, Hao Li, Da-Qing Chen, Yan-Qing Wu, Jian Xiao, Ke Xu, Xiao-Kun Li, Hong-Yu Zhang. Exogenous platelet-derived growth factor improves neurovascular unit recovery after spinal cord injury [J]. Neural Regeneration Research, 2021, 16(4): 757-763. |
[14] | Kenneth Maiese. Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1 [J]. Neural Regeneration Research, 2021, 16(3): 448-455. |
[15] | Alba Guijarro-Belmar, Dominik Mateusz Domanski, Xuenong Bo, Derryck Shewan, Wenlong Huang. The therapeutic potential of targeting exchange protein directly activated by cyclic adenosine 3′,5′-monophosphate (Epac) for central nervous system trauma [J]. Neural Regeneration Research, 2021, 16(3): 460-469. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||