Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (2): 177-185.doi: 10.3969/j.issn.1673-5374.2013.02.011
Previous Articles Next Articles
Shu-xin Zhang1, Fengfa Huang1, Mary Gates1, Eric G. Holmberg1, 2
Received:
2012-11-29
Revised:
2012-12-25
Online:
2013-01-15
Published:
2013-01-15
Contact:
Shu-xin Zhang, Spinal Cord Society Research Center, 2301 Research Blvd., Suite #203, Fort Collins, CO 80526-1826, USA,szhang@qwestoffic.net
About author:
Shu-xin Zhang☆, M.D., Ph.D.
Supported by:
This study was supported by the Spinal Cord Society.
Shu-xin Zhang, Fengfa Huang, Mary Gates, Eric G. Holmberg . Role of endogenous Schwann cells in tissue repair after spinal cord injury[J]. Neural Regeneration Research, 2013, 8(2): 177-185.
[1] Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, et al. A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma. 2011;28(8):1611-1682.http://online.liebertpub.com/doi/abs/10.1089/neu.2009.1177[2] Wiliams RR and Bunge MB. Schwann cell transplantation: A repair strategy for spinal cord injury? Prog Brain Res. 2012;201:295-312.http://www.sciencedirect.com/science/article/pii/B9780444595447000147[3] Oudega M and Xu XM. Schwann Cell Transplantation for Repair of the Adult Spinal Cord. J Neurotrauma. 2006;23(3-4):453-467.http://online.liebertpub.com/doi/abs/10.1089/neu.2006.23.453[4] Takami T, Oudega M, Bates ML, et al. Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J Neurosci. 2002;22(15):6670-6681.http://www.jneurosci.org/content/22/15/6670.long[5] Oudega M, Moon LD, and de Almeida Leme RJ. Schwann cells for spinal cord repair. Braz J Med Biol Res. 2005;38(6):825-835.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2005000600003&lng=en&nrm=iso&tlng=en[6] Xu XM, Zhang SX, Li H, et al. Regrowth of axons into the distal spinal cord through a Schwann-cell- seeded mini-channel implanted into hemisected adult rat spinal cord. Eur J Neurosci. 1999;11(5):1723-1740.http://onlinelibrary.wiley.com/doi/10.1046/j.1460-9568.1999.00591.x/abstract;jsessionid=3049C428A7198FB51F24A8E7806F7837.d02t04[7] Kohama I, Lankford KL, Preiningerova J, et al. Transplantation of cryopreserved adult human Schwann cells enhances axonal conduction in demyelinated spinal cord. J Neurosci. 2001;21(3):944-950.http://www.jneurosci.org/content/21/3/944.long[8] Honmou O, Felts PA, Waxman SG, et al. Restoration of normal conduction properties in demyelinated spinal cord axons in the adult rat by transplantation of exogenous Schwann cells. J Neurosci. 1996;16(10):3199-3208.http://www.jneurosci.org/content/16/10/3199.long[9] Beattie MS, Bresnahan JC, Komon J, et al. Endogenous repair after spinal cord contusion injuries in the rat. Exp Neurol. 1997;148(2):453-463.http://www.sciencedirect.com/science/article/pii/S0014488697966954[10] Bresnahan JC. An electron-microscopic analysis of axonal alterations following blunt contusion of the spinal cord of the rhesus monkey (Macaca mulatta). J Neurol Sci. 1978;37(1-2):59-82.http://www.sciencedirect.com/science/article/pii/0022510X78902289[11] Feigin I and Ogata J. Schwann cells and peripheral myelin within human central nervous tissues: the mesenchymal character of Schwann cells. J Neuropathol Exp Neurol. 1971;30(4):603-612.http://journals.lww.com/jneuropath/Citation/1971/10000/Schwann_Cells_and_Peripheral_Myelin_Within_Human.5.aspx[12] Bunge RP, Puckett WR, Becerra JL, et al. Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv Neurol. 1993;59:75-89.http://www.unboundmedicine.com/evidence/ub/citation/8420126/Observations_on_the_pathology_of_human_spinal_cord_injury__A_review_and_classification_of_22_new_cases_with_details_from_a_case_of_chronic_cord_compression_with_extensive_focal_demyelination_[13] Guest JD, Hiester ED, and Bunge RP. Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp Neurol. 2005;192(2):384-393.http://www.sciencedirect.com/science/article/pii/S0014488604004741[14] Buss A, Pech K, Kakulas BA, et al. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury. Brain. 2007;130(Pt 4):940-953.http://brain.oxfordjournals.org/content/130/4/940.long[15] Buss A, Pech K, Kakulas BA, et al. NG2 and phosphacan are present in the astroglial scar after human traumatic spinal cord injury. BMC Neurol. 2009;9:32.http://www.biomedcentral.com/1471-2377/9/32[16] Hill CE, Moon LD, Wood PM, et al. Labeled Schwann cell transplantation: Cell loss, host Schwann cell replacement, and strategies to enhance survival. Glia. 2006;53(3):338-343.http://onlinelibrary.wiley.com/doi/10.1002/glia.20287/abstract[17] Biernaskie J, Sparling JS, Liu J, et al. Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury. J Neurosci. 2007;27(36):9545-9559.http://www.jneurosci.org/content/27/36/9545.long[18] Zhang SX, Huang FF, Gates M, et al. Histological repair of damaged spinal cord tissue from chronic contusion injury of rat: A LM observation. Histology and Histopathology. 2011;26:45-58.http://www.hh.um.es/Abstracts/Vol_26/26_1/26_1_45.htm[19] Zhang SX, Geddes JW, Owens JL, et al. X-irradiation reduces lesion scarring at the contusion site of adult rat spinal cord. Histol Histopathol. 2005;20(2):519-530.http://www.hh.um.es/Abstracts/Vol_20/20_2/20_2_519.htm[20] Meletis K, Barnabe-Heider F, Carlen M, et al. Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol. 2008;6(7):e182.http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.0060182[21] Yoshimura K, Negishi T, Kaneko A, et al. Monoclonal antibodies specific to the integral membrane protein P0 of bovine peripheral nerve myelin. Neurosci Res. 1996;25(1):41-49.http://www.sciencedirect.com/science/article/pii/0168010296010267[22] Allen D, Giannopoulos K, Gray I, et al. Antibodies to peripheral nerve myelin proteins in chronic inflammatory demyelinating polyradiculoneuropathy. J Peripher Nerv Syst. 2005;10(2):174-180.http://onlinelibrary.wiley.com/doi/10.1111/j.1085-9489.2005.0010207.x/abstract[23] Liu XZ, Xu XM, Hu R, et al. Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci. 1997;17(14):5395-5406.http://www.jneurosci.org/content/17/14/5395.long[24] Blight AR. Delayed demyelination and macrophage invasion: a candidate for secondary cell damage in spinal cord injury. Cent Nerv Syst Trauma. 1985;2(4):299-315.http://online.liebertpub.com/doi/abs/10.1089/cns.1985.2.299[25] Gilmore SA and Duncan D. On the presence of peripheral-like nervous and connective tissue within irradiated spinal cord. Anat Rec. 1968;160(4):675-690.http://onlinelibrary.wiley.com/doi/10.1002/ar.1091600403/abstract[26] Hirano A, Zimmerman HM, and Levine S. Electron microscopic observations of peripheral myelin in a central nervous system lesion. Acta Neuropathol. 1969;12(4):348-365.http://link.springer.com/article/10.1007%2FBF00809131?LI=true[27] Blakemore WF. Remyelination by Schwann cells of axons demyelinated by intraspinal injection of 6-aminonicotinamide in the rat. J Neurocytol. 1975;4(6):745-757.http://link.springer.com/article/10.1007%2FBF01181634?LI=true[28] Blakemore WF, Crang AJ, Evans RJ, et al. Rat Schwann cell remyelination of demyelinated cat CNS axons: evidence that injection of cell suspensions of CNS tissue results in Schwann cell remyelination. Neurosci Lett. 1987;77(1):15-19.http://www.sciencedirect.com/science/article/pii/0304394087905994[29] Raine CS. On the occurrence of Schwann cells within the normal central nervous system. J Neurocytol. 1976;5(3):371-380.http://link.springer.com/article/10.1007%2FBF01175122?LI=true[30] Blight AR and Young W. Central axons in injured cat spinal cord recover electrophysiological function following remyelination by Schwann cells. J Neurol Sci. 1989;91(1-2):15-34.http://www.sciencedirect.com/science/article/pii/0022510X89900737[31] Blakemore WF. Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve. Nature. 1977;266(5597):68-69.http://www.nature.com/nature/journal/v266/n5597/abs/266068a0.html[32] Smith EJ, Blakemore WF, and McDonald WI. Central remyelination restores secure conduction. Nature. 1979;280(5721):395-396.http://www.nature.com/nature/journal/v280/n5721/abs/280395a0.html[33] Felts PA and Smith KJ. Conduction properties of central nerve fibers remyelinated by Schwann cells. Brain Res. 1992;574(1-2):178-192.http://www.sciencedirect.com/science/article/pii/000689939290815Q[34] Imaizumi T, Lankford KL, and Kocsis JD. Transplantation of olfactory ensheathing cells or Schwann cells restores rapid and secure conduction across the transected spinal cord. Brain Res. 2000;854(1-2):70-78.http://www.sciencedirect.com/science/article/pii/S0006899399022854[35] Afshari FT, Kwok JC, White L, et al. Schwann cell migration is integrin-dependent and inhibited by astrocyte-produced aggrecan. Glia. 2010;58(7):857-869.http://onlinelibrary.wiley.com/doi/10.1002/glia.20970/abstract[36] Hill CE, Guller Y, Raffa SJ, et al. A calpain inhibitor enhances the survival of Schwann cells in vitro and after transplantation into the injured spinal cord. J Neurotrauma. 2010;27(9):1685-1695.http://online.liebertpub.com/doi/abs/10.1089/neu.2010.1272[37] Azanchi R, Bernal G, Gupta R, et al. Combined demyelination plus Schwann cell transplantation therapy increases spread of cells and axonal regeneration following contusion injury. J Neurotrauma. 2004;21(6):775-788.http://online.liebertpub.com/doi/abs/10.1089/0897715041269696[38] Keirstead HS, Ben-Hur T, Rogister B, et al. Polysialylated neural cell adhesion molecule-positive CNS precursors generate both oligodendrocytes and Schwann cells to remyelinate the CNS after transplantation. J Neurosci. 1999;19(17):7529-7536.http://www.jneurosci.org/content/19/17/7529.long[39] Blakemore WF and Crang AJ. The use of cultured autologous Schwann cells to remyelinate areas of persistent demyelination in the central nervous system. J Neurol Sci. 1985;70(2):207-223.http://www.sciencedirect.com/science/article/pii/0022510X85900887[40] Franklin RJ and Barnett SC. Do olfactory glia have advantages over Schwann cells for CNS repair? J Neurosci Res. 1997;50(5):665-672.http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-4547(19971201)50:5%3C665::AID-JNR4%3E3.0.CO;2-F/abstract[41] Franklin RJ. Remyelination of the demyelinated CNS: the case for and against transplantation of central, peripheral and olfactory glia. Brain Res Bull. 2002;57(6):827-832.http://www.sciencedirect.com/science/article/pii/S0361923001007651[42] Iwashita Y and Blakemore WF. Areas of demyelination do not attract significant numbers of schwann cells transplanted into normal white matter. Glia. 2000;31(3):232-240.http://onlinelibrary.wiley.com/doi/10.1002/1098-1136(200009)31:3%3C232::AID-GLIA40%3E3.0.CO;2-8/abstract[43] Iwashita Y, Fawcett JW, Crang AJ, et al. Schwann cells transplanted into normal and X-irradiated adult white matter do not migrate extensively and show poor long-term survival. Exp Neurol. 2000;164(2):292-302.http://www.sciencedirect.com/science/article/pii/S0014488600974405[44] Bunge MB and Wood PM. Realizing the maximum potential of Schwann cells to promote recovery from spinal cord injury. Handb Clin Neurol. 2012;109:523-540.http://pubmed.cn/23098734[45] Duncan ID and Hoffman RL. Schwann cell invasion of the central nervous system of the myelin mutants. J Anat. 1997;190 ( Pt 1):35-49.http://onlinelibrary.wiley.com/doi/10.1046/j.1469-7580.1997.19010035.x/abstract[46] Raisman G, Lawrence JM, and Brook GA. Schwann cells transplanted into the CNS. Int J Dev Neurosci. 1993;11(5):651-669.http://www.ncbi.nlm.nih.gov/pubmed/8116477[47] Brook GA, Lawrence JM, and Raisman G. Morphology and migration of cultured Schwann cells transplanted into the fimbria and hippocampus in adult rats. Glia. 1993;9(4):292-304.http://www.ncbi.nlm.nih.gov/pubmed/8112822[48] Zhang S, Kluge B, Huang F, et al. Photochemical scar ablation in chronically contused spinal cord of rat. J Neurotrauma. 2007;24(2):411-420.http://online.liebertpub.com/doi/abs/10.1089/neu.2006.0065[49] Brewer KL, Bethea JR, and Yezierski RP. Neuroprotective effects of interleukin-10 following excitotoxic spinal cord injury. Exp Neurol. 1999;159(2):484-493.http://www.sciencedirect.com/science/article/pii/S001448869997173X[50] Ramer LM, Au E, Richter MW, et al. Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury. J Comp Neurol. 2004;473(1):1-15.http://onlinelibrary.wiley.com/doi/10.1002/cne.20049/abstract[51] Zhang SX, Huang F, Gates M, et al. Scar ablation combined with LP/OEC transplantation promotes anatomical recovery and P0-positive myelination in chronically contused spinal cord of rats. Brain Res. 2011;1399:1-14.http://www.sciencedirect.com/science/article/pii/S000689931100864X[52] Au E, Richter MW, Vincent AJ, et al. SPARC from olfactory ensheathing cells stimulates Schwann cells to promote neurite outgrowth and enhances spinal cord repair. J Neurosci. 2007;27(27):7208-7221.http://www.jneurosci.org/content/27/27/7208.long[53] Lu P, Jones LL, and Tuszynski MH. BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol. 2005;191(2):344-360.http://www.sciencedirect.com/science/article/pii/S0014488604003917[54] Lu P, Jones LL, and Tuszynski MH. Axon regeneration through scars and into sites of chronic spinal cord injury. Exp Neurol. 2007;203(1):8-21.http://www.sciencedirect.com/science/article/pii/S0014488606004365[55] Bunge MB, Holets VR, Bates ML, et al. Characterization of photochemically induced spinal cord injury in the rat by light and electron microscopy. Exp Neurol. 1994;127(1):76-93.http://www.sciencedirect.com/science/article/pii/S001448868471082X[56] Blakemore WF and Patterson RC. Observations on the interactions of Schwann cells and astrocytes following X-irradiation of neonatal rat spinal cord. J Neurocytol. 1975;4(5):573-585.http://link.springer.com/article/10.1007/BF01351538[57] Oudega M. Introduction: experimental strategies to repair the injured spinal cord. J Neurotrauma. 2006;23(3-4):vii-viii.http://online.liebertpub.com/doi/abs/10.1089/neu.2006.23.vii?prevSearch=Introduction%253A%2Bexperimental%2Bstrategies%2Bto%2Brepair%2Bthe%2Binjured%2Bspinal%2Bcord&searchHistoryKey=[58] Tuszynski MH, Gabriel K, Gerhardt K, et al. Human spinal cord retains substantial structural mass in chronic stages after injury. J Neurotrauma. 1999;16(6):523-531.http://online.liebertpub.com/doi/abs/10.1089/neu.1999.16.523?prevSearch=Human%2Bspinal%2Bcord%2Bretains%2Bsubstantial%2Bstructural%2Bmass%2Bin%2Bchronic%2Bstages%2Bafter%2Binjury&searchHistoryKey=[59] Norenberg MD, Smith J, and Marcillo A. The pathology of human spinal cord injury: defining the problems. J Neurotrauma. 2004;21(4):429-440.http://online.liebertpub.com/doi/abs/10.1089/089771504323004575[60] Campana WM. Schwann cells: activated peripheral glia and their role in neuropathic pain. Brain Behav Immun. 2007;21(5):522-527.http://www.sciencedirect.com/science/article/pii/S0889159106003965 |
[1] | Isaac G. Onyango, James P. Bennett, Jr, Gorazd B. Stokin. Regulation of neuronal bioenergetics as a therapeutic strategy in neurodegenerative diseases [J]. Neural Regeneration Research, 2021, 16(8): 1467-1482. |
[2] | Mansour Alwjwaj, Rais Reskiawan A. Kadir, Ulvi Bayraktutan. The secretome of endothelial progenitor cells: a potential therapeutic strategy for ischemic stroke [J]. Neural Regeneration Research, 2021, 16(8): 1483-1489. |
[3] | Yu Li, Ping-Ping Shen, Bin Wang. Induced pluripotent stem cell technology for spinal cord injury: a promising alternative therapy [J]. Neural Regeneration Research, 2021, 16(8): 1500-1509. |
[4] | Sara Saffari, Tiam M. Saffari, Dietmar J. O. Ulrich, Steven E. R. Hovius, Alexander Y. Shin. The interaction of stem cells and vascularity in peripheral nerve regeneration [J]. Neural Regeneration Research, 2021, 16(8): 1510-1517. |
[5] | Ci Li, Song-Yang Liu, Wei Pi, Pei-Xun Zhang. Cortical plasticity and nerve regeneration after peripheral nerve injury [J]. Neural Regeneration Research, 2021, 16(8): 1518-1523. |
[6] | Stefan Kassumeh, Gregor R. Weber, Matthias Nobl, Siegfried G. Priglinger, Andreas Ohlmann. The neuroprotective role of Wnt signaling in the retina [J]. Neural Regeneration Research, 2021, 16(8): 1524-1528. |
[7] | Shi-Qin Lv, Wutian Wu. ISP and PAP4 peptides promote motor functional recovery after peripheral nerve injury [J]. Neural Regeneration Research, 2021, 16(8): 1598-1605. |
[8] | Shu Wang, Miao Gu, Cheng-Cheng Luan, Yu Wang, Xiaosong Gu, Jiang-Hong He. Biocompatibility and biosafety of butterfly wings for the clinical use of tissue-engineered nerve grafts [J]. Neural Regeneration Research, 2021, 16(8): 1606-1612. |
[9] | Yu-Song Yuan, Fei Yu, Ya-Jun Zhang, Su-Ping Niu, Hai-Lin Xu, Yu-Hui Kou. Changes in proteins related to early nerve repair in a rat model of sciatic nerve injury [J]. Neural Regeneration Research, 2021, 16(8): 1622-1627. |
[10] | Guo-Yu Wang, Zhi-Jian Cheng, Pu-Wei Yuan, Hao-Peng Li, Xi-Jing He. Olfactory ensheathing cell transplantation alters the expression of chondroitin sulfate proteoglycans and promotes axonal regeneration after spinal cord injury [J]. Neural Regeneration Research, 2021, 16(8): 1638-1644. |
[11] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[12] | Ling-Yu Zhang, Qian-Qian Jin, Christian Hölscher, Lin Li. Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist DA-CH5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat Parkinson model [J]. Neural Regeneration Research, 2021, 16(8): 1660-1670. |
[13] | Meng-Shi Yang, Xiao-Jian Xu, Bin Zhang, Fei Niu, Bai-Yun Liu. Comparative transcriptomic analysis of rat versus mouse cerebral cortex after traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(7): 1235-1243. |
[14] | Qiang Gao, Aaron Leung, Yong-Hong Yang, Benson Wui-Man Lau, Qian Wang, Ling-Yi Liao, Yun-Juan Xie, Cheng-Qi He. Extremely low frequency electromagnetic fields promote cognitive function and hippocampal neurogenesis of rats with cerebral ischemia [J]. Neural Regeneration Research, 2021, 16(7): 1252-1257. |
[15] | Ayaka Sugeno, Wenhui Piao, Miki Yamazaki, Kiyofumi Takahashi, Koji Arikawa, Hiroko Matsunaga, Masahito Hosokawa, Daisuke Tominaga, Yoshio Goshima, Haruko Takeyama, Toshio Ohshima. Cortical transcriptome analysis after spinal cord injury reveals the regenerative mechanism of central nervous system in CRMP2 knock-in mice [J]. Neural Regeneration Research, 2021, 16(7): 1258-1265. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||