[1] Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3): 189-198. http://www.sciencedirect.com/science/article/pii/0022395675900266[2] Lehéricy S, Delmaire C, Galanaud D, et al. Neuroimaging in dementia. Presse Med. 2007;36(10 Pt 2):1453-1463.http://www.em-consulte.com/article/134200/alertePM[3] O'Brien JT. Role of imaging techniques in the diagnosis of dementia. Br J Radiol. 2007;80(Spec No 2):S71-77. http://bjr.birjournals.org/content/80/Special_Issue_2/S71.long[4] Pimlott SL, Ebmeier KP. SPECT imaging in dementia. Br J Radiol. 2007;80(Spec No 2):S153-159.http://bjr.birjournals.org/cgi/pmidlookup?view=long&pmid=18445745[5] Frisoni GB, Fox NC, Jack CR Jr, et al. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol. 2010;6(2):67-77. http://www.nature.com/nrneurol/journal/v6/n2/full/nrneurol.2009.215.html[6] Lancu I, Olmer A. The minimental state examination--an up-to-date review. Harefuah. 2006;145(9):687-690,701.http://www.ncbi.nlm.nih.gov/pubmed?term=The%20minimental%20state%20examination--an%20up-to-date%20review.%20Harefuah[7] Eschweiler GW, Leyhe T, Klöppel S, et al. New developments in the diagnosisof dementia. Dtsch Arztebl Int. 2010;107(39):677-683. http://dx.doi.org/10.3238/arztebl.2010.0677[8] Grossi E, Buscema M. Introduction to artificial neural networks. Eur J Gastroenterol Hepatol. 2007;19(12): 1046-1054. http://www.ncbi.nlm.nih.gov/pubmed?term=Introduction%20to%20artificial%20neural%20networks.%20Eur%20J%20Gastroenterol%20Hepatol[9] Ramesh AN, Kambhampati C, Monson JR, et al. Artificial intelligence in medicine. Ann R Coll Surg Engl. 2004;86(5): 334-338. http://www.ingentaconnect.com/content/rcse/arcs/2004/00000086/00000005/art00002?token=005d1c7fe12c62c7bf5439412f415d763f257070557b5f5f316353253048296a7c2849266d656c319c5e6cb1e36af[10] Franceschi M, Caffarra P, Savarè R, et al. Tower of London test: a comparison between conventional statistic approach and modelling based on artificial neural network in differentiating fronto-temporal dementia from Alzheimer’s disease. Behav Neurol. 2011;24(2):149-158. http://iospress.metapress.com/content/y44415h379514216/?genre=article&issn=0953-4180&volume=24&issue=2&spage=149[11] Grossi E, Buscema MP, Snowdon D, et al. Neuropathological findings processed by artificial neural networks (ANNs) can perfectly distinguish Alzheimer’s patients from controls in the Nun Study. BMC Neurol. 2007;7:15. http://www.biomedcentral.com/1471-2377/7/15[12] Castellani RJ, Rolston RK, Smith MA. Alzheimer disease. Dis Mon. 2010;56(9):484-546. http://www.diseaseamonth.com/article/S0011-5029(10)00068-4/abstract[13] Perl DP, Moalem S. Aluminum and Alzheimer’s disease, a personal perspective after 25 years. J Alzheimers Dis. 2006;9(3 Suppl):291-300. http://iospress.metapress.com/content/94qprjdl2hl1/?genre=article&issn=1387-2877&volume=9&issue=3&spage=291[14] Jiang LF, Yao TM, Zhu ZL, et al. Impacts of Cd(II) on the conformation and self-aggregation of Alzheimer’s tau fragment corresponding to the third repeat of microtubule- binding domain. Biochim Biophys Acta. 2007;1774(11): 1414-1421. http://www.sciencedirect.com/science/article/pii/S1570963907002026[15] Marshall GA, Olson LE, Frey MT, et al. Instrumental activities of daily living impairment is associated with increased amyloid burden. Dement Geriatr Cogn Disord. 2011;31(6):443-450. http://content.karger.com/produktedb/produkte.asp?DOI=10.1159/000329543[16] Li J, Zhu M, Manning-Bog AB, et al. Dopamine and L-dopa disaggregate amyloid fibrils: implications for Parkinson's and Alzheimer's disease. FASEB J. 2004; 18(9):962-964. http://www.fasebj.org/content/early/2004/06/02/fj.03-0770fje.long[17] Meltzer CC, Smith G, DeKosky ST, et al. Serotonin in aging, late-life depression, and Alzheimer’s disease: the emerging role of functional imaging. Neuropsychopharmacology. 1998; 18(6):407-430.http://www.nature.com/npp/journal/v18/n6/full/1395175a.html[18] Griebe M, Daffertshofer M, Stroick M, et al. Infrared spectroscopy: a new diagnostic tool in Alzheimer disease. Neurosci Lett. 2007;420(1):29-33. http://www.sciencedirect.com/science/article/pii/S0304394007003813[19] da Silva Lopes HF, Abe JM, Anghinah R. Application of paraconsistent artificial neural networks as a method of aid in the diagnosis of Alzheimer disease. J Med Syst. 2010;34(6):1073-1081. http://link.springer.com/article/10.1007%2Fs10916-009-9325-2[20] Rossini PM, Buscema M, Capriotti M, et al. Is it possible to automatically distinguish resting EEG data of normal elderly vs. mild cognitive impairment subjects with high degree of accuracy? Clin Neurophysiol. 2008;119(7): 1534-1545. http://www.clinph-journal.com/article/S1388-2457(08)00197-1/abstract[21] Buscema M, Rossini P, Babiloni C, et al. The IFAST model, a novel parallel nonlinear EEG analysis technique, distinguishes mild cognitive impairment and Alzheimer’s disease patients with high degree of accuracy. Artif Intell Med. 2007;40(2):127-141. http://www.aiimjournal.com/article/S0933-3657(07)00015-2/abstract[22] Babiloni C, Frisoni GB, Vecchio F, et al. Global functional coupling of resting EEG rhythms is related to white-matter lesions along the cholinergic tracts in subjects with amnesic mild cognitive impairment. J Alzheimers Dis. 2010;19(3):859-871.http://iospress.metapress.com/content/r88v403w3545g4u4/?genre=article&issn=1387-2877&volume=19&issue=3&spage=859[23] Buscema M, Grossi E, Capriotti M, et al. The I.F.A.S.T. model allows the prediction of conversion to Alzheimer disease in patients with mild cognitive impairment with high degree of accuracy. Curr Alzheimer Res. 2010;7(2): 173-187. http://www.eurekaselect.com/85770/article[24] Gerardin E, Chételat G, Chupin M, et al. Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. Neuroimage. 2009;47(4):1476-1486. http://www.sciencedirect.com/science/article/pii/S1053811909005485[25] Davatzikos C, Resnick SM, Wu X, et al. Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. Neuroimage. 2008;41(4):1220-1227. http://www.sciencedirect.com/science/article/pii/S1053811908002966[26] Huang P, Tan HZ, Huang HL, et al. The research of a simple prediction model for Alzheimer’disease. Zhongguo Laonianxue Zazhi. 2010;21(30):3041-3044.http://lib.cqvip.com/qk/96212A/201021/35952803.html[27] Desai AK, Grossberg GT, Sheth DN. Activities of daily living in patients with dementia: clinical relevance, methods of assessment and effects of treatment. CNS Drugs. 2004;18(13):853-875.http://content.wkhealth.com/linkback/openurl?issn=1172-7047&volume=18&issue=13&spage=853[28] Rodríguez-Andreu J, Ibáñez-Bosch R, Portero-Vázquez A, et al. Cognitive impairment in patients with fibromyalgia syndrome as assessed by the mini-mental state examination. BMC Musculoskelet Disord. 2009;10:162.http://www.biomedcentral.com/1471-2474/10/162[29] World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines. Geneva, Switzerland: World Health Organization. 1992.http://books.google.com.hk/books?id=KJVqAAAAMAAJ&lr=&hl=zh-CN&sitesec=reviews[30] Chinese Psychiatry Association. Chinese Classification of Mental Disorders. 3rd ed.Jinan: Shandong Science Press. 2000.http://tejiaowang.com/tjcd/20110611101.html[31] Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43(11): 2412-2414. http://www.ncbi.nlm.nih.gov/pubmed?term=The%20Clinical%20Dementia%20Rating%20(CDR)%3A%20current%20version%20and%20scoring%20rules.%20Neurology.[32] Pantoni L, Inzitari D. Hachinski’s ischemic score and the diagnosis of vascular dementia: a review. Ital J Neurol Sci. 1993;14(7):539-546.http://www.ncbi.nlm.nih.gov/pubmed/8282525 |