Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (4): 346-356.doi: 10.3969/j.issn.1673-5374.2013.04.007
Previous Articles Next Articles
Yang-Kun Chen1, Wei-Min Xiao1, Defeng Wang2, Lin Shi2, Winnie CW Chu2, Vincent CT Mok3, Ka Sing Wong3, Gabor S Ungvari4, Wai Kwong Tang5
Received:
2012-11-12
Revised:
2013-01-10
Online:
2013-02-05
Published:
2013-02-05
Contact:
Wai Kwong Tang, M.D., Professor, Department of Psychiatry, Shatin Hospital, Shatin, N.T., Hong Kong, China, tangwk@cuhk.edu.hk.
About author:
Yang-Kun Chen☆, M.D., Ph.D
Supported by:
This study was supported by the Research Grants Council of the Hong Kong SAR, No. 452906.
Yang-Kun Chen, Wei-Min Xiao, Defeng Wang, Lin Shi, Winnie CW Chu, Vincent CT Mok, Ka Sing Wong, Gabor S Ungvari, Wai Kwong Tang. Atrophy of the left dorsolateral prefrontal cortex is associated with poor performance in verbal fluency in elderly poststroke women[J]. Neural Regeneration Research, 2013, 8(4): 346-356.
[1] Jokinen H, Kalska H, Ylikoski R, et al. MRI-defined subcortical ischemic vascular disease: baseline clinical and neuropsychological findings. The LADIS Study. Cerebrovasc Dis. 2009;27(4):336-344. [2] Elliott R. Executive functions and their disorders. Br Med Bull. 2003;65(1):49-59.[3] Lezak M. Neuropsychological Assessment. 3rd ed. New York: Oxford University Press. 1985.[4] Benarroch EE, Daube JR, Flemming KD, et al. Mayo Clinic Medical Neurosciences. 5th ed. Minnesota: Mayo Clinic Scientific Press. 2007. [5] Cabeza R, Nyberg L. Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci. 2000;12(1):1-47.[6] Cuenod CA, Bookheimer SY, Hertz-Pannier L, et al. Functional MRI during word generation, using conventional equipment: a potential tool for language localization in the clinical environment. Neurology. 1995; 45(10):1821-1827.[7] Frith CD, Friston KJ, Liddle PF, et al. A PET study of word finding. Neuropsychologia. 1991;29(12):1137-1148.[8] Warburton E, Wise RJ, Price CJ, et al. Noun and verb retrieval by normal subjects. Studies with PET. Brain. 1996; 119(Pt 1):159-179.[9] Henry JD, Crawford JR. A meta-analytic review of verbal fluency performance following focal cortical lesions. Neuropsychology. 2004;18(2):284-295.[10] Huey ED, Goveia EN, Paviol S, et al. Executive dysfunction in frontotemporal dementia and corticobasal syndrome. Neurology. 2009;72(5):453-459.[11] Collaer ML, Hines M. Human behavioral sex differences: a role for gonadal hormones during early development? Psychol Bull.1995;118(1):55-107.[12] Duff SJ, Hampson E. A sex differences on a novel spatial working memory task in humans. Brain Cogn. 2001;47(3): 470-493. [13] Joseph R. The evolution of sex differences in language, sexuality, and visual-spatial skills. Arch Sex Behav. 2000; 29(1):35-66.[14] Burton LA, Henninger D, Hafetz J. Gender differences in relations of mental rotation, verbal fluency, and SAT scores to finger length ratios as hormonal indexes. Dev Neuropsychol Dev Neuropsychol. 2005,28(1):493-505.[15] Tan U, Okuyan M, Albayrak T, et al. Sex differences in verbal and spatial ability reconsidered in relation to body size, lung volume, and sex hormones. Percept Mot Skills. 2003;96(3 Pt 2):1347-1360.[16] Welborn BL, Papademetris X, Reis DL, et al. Variation in orbitofrontal cortex volume: relation to sex, emotion regulation and affect. Soc Cogn Affect Neurosci. 2009; 4(4):328-339.[17] Gur RC, Turetsky BI, Matsui M, et al. Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance. J Neurosci. 1999; 19(10):4065-4072.[18] Luders E, Narr KL, Thompson PM, et al. Gender differences in cortical complexity. Nat Neurosci. 2004;7(8): 799-800.[19] Goldstein JM, Jerram M, Poldrack R, et al. Sex differences in prefrontal cortical brain activity during fMRI of auditory verbal working memory. Neuropsychology. 2005;19(4):509-519.[20] Gur RC, Gunning-Dixon F, Bilker WB, et al. Sex differences in temporo-limbic and frontal brain volumes of healthy adults. Cereb Cortex. 2002;12(9):998-1003.[21] Lavretsky H, Kurbanyan K, Ballmaier M, et al. Sex differences in brain structure in geriatric depression. Am J Geriatr Psychiatry. 2004;12(6):653-657.[22] Andreano JM, Cahill L. Glucocorticoid release and memory consolidation in men and women. Psychol Sci. 2006;17(6):466-470.[23] Cahill L. Sex- and hemisphere-related influences on the neurobiology of emotionally influenced memory. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(8): 1235-1241.[24] Cahill L, Gorski L, Belcher A, et al. The influence of sex versus sexrelated traits on long-term memory for gist and detail from an emotional story. Conscious Cogn. 2004; 13(2):391-400.[25] Cahill L, van Stegeren A. Sex-related impairment of memory for emotional events with beta-adrenergic blockade. Neurobiol Learn Mem. 2003;79(1):81-88.[26] Chen Y, Chen X, Xiao W, et al. Frontal lobe atrophy is associated with small vessel disease in ischemic stroke patients. Clin Neurol Neurosurg. 2009;111(10):852-857.[27] Mok VC, Liu T, Lam WW, et al. Neuroimaging predictors of cognitive impairment in confluent white matter lesion: volumetric analyses of 99 brain regions. Dement Geriatr Cogn Disord. 2008;25(1):67-73.[28] Jokinen H, Kalska H, Ylikoski R, et al. Longitudinal cognitive decline in subcortical ischemic vascular disease- the LADIS Study. Cerebrovasc Dis. 2009;27(4):384-391.[29] Jokinen H, Ryberg C, Kalska H,et al. Corpus callosum atrophy is associated with mental slowing and executive deficits in subjects with age-related white matter hyperintensities: the LADIS Study. J Neurol Neurosurg Psychiatry. 2007;78(5):491-496. [30] Jurado MA, Mataro M, Verger K, et al. Phonemic and semantic fluencies in traumatic brain injury patients with focal frontal lesions. Brain Inj. 2000;14(9):789-795.[31] Troyer AK, Moscovitch M, Winocur G, et al. Clustering and switching on verbal fluency: the effects of focal frontal- and temporal-lobe lesions. Neuropsychologia. 1998; 36(6):499-504.[32] Hirshorn EA, Thompson-Schill SL. Role of the left inferior frontal gyrus in covert word retrieval: Neural correlates of switching during verbal fluency. Neuropsychologia. 2006; 44(12):2547-2557. [33] Appollonio I, Leone M, Isella V, et al. The Frontal Assessment Battery (FAB): normative values in an Italian population sample. Neurol Sci. 2005;26(2):108-116. [34] Whalley LJ, Deary IJ, Appleton CL, et al. Cognitive reserve and the neurobiology of cognitive aging. Ageing Res Rev. 2004;3(4):369-382. [35] Román GC, Erkinjuntti T, Wallin A, et al. Subcortical ischaemic vascular dementia. Lancet Neurol. 2002;1(7): 426-436.[36] Ishii N, Nishihara Y, Imamura T. Why do frontal lobe symptoms predominate in vascular dementia with lacunes? Neurology.1986;36(3):340-345. [37] Wen HM, Mok VC, Fan YH, et al. Effect of white matter changes on cognitive impairment in patients with lacunar infarcts. Stroke. 2004;35(8):1826-1830. [38] Becker JB, Breedlove SM, Crews D. Behavioral Endocrinology. Cambridge MA: MIT Press. 1992.[39] Bixo M, Bäckström T, Winblad B, et al. Estradiol and testosterone in specific regions of the human female brain in different endocrine states. J Steroid Biochem Mol Biol. 1995;55(3-4):297-303.[40] Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc. 2002;8(3):448-460.[41] Lyden P, Lu M, Jackson C, et al. Underlying structure of the National Institutes of Health Stroke Scale: results of a factor analysis. NINDS tPA Stroke Trial Investigators. Stroke.1999;30(11):2347-2354.[42] Firbank MJ, Lloyd AJ, Ferrier N, et al. A volumetric study of MRI signal hyperintensities in late-life depression. Am J Geriatr Psychiatry. 2004;12(6):606-612.[43] Tang WK, Chan SS, Chiu HF, et al. Frequency and determinants of prestroke dementia in a Chinese cohort. J Neurol. 2004;251(5):604-608. [44] Zhou DH, Wang JY, Li J, et al. Frequency and risk factors of vascular cognitive impairment three months after ischemic stroke in china: the Chongqing stroke study. Neuroepidemiology. 2005;24(1-2):87-95.[45] Chiu FK, Lee HC, Chung WS, et al. Reliability and validity of the Cantonese version of the mini-Mental State Examination-preliminary study. HK J Psychiatry. 1994;4(1):25-28.[46] Dubois B, Slachevsky A, Litvan I, et al. The FAB: a Frontal Assessment Battery at bedside. Neurology. 2000;55(11): 1621-1626.[47] Mok VC, Wong A, Yim P, et al. The validity and reliability of chinese frontal assessment battery in evaluating executive dysfunction among Chinese patients with small subcortical infarct. Alzheimer Dis Assoc Disord. 2004; 18(2):68-74.[48] Tang WK, Chen Y, Lam WW, et al. Emotional incontinence and executive function in ischemic stroke: a case- controlled study. J Int Neuropsychol Soc. 2009;15(1): 62-68.[49] Torralva T, Roca M, Gleichgerrcht E, et al. A neuropsychological battery to detect specific executive and social cognitive impairments in early frontotemporal dementia. Brain. 2009;132(5):1299-1309. [50] Chiu HF, Chan CK, Lam LC, et al. The modified Fuld Verbal Fluency Test: a validation study in Hong Kong. J Gerontol B Psychol Sci Soc Sci.1997;52(5):247-250.[51] Lim PP, Ng LL, Chiam PC, et al. Validation and comparison of three brief depression scales in an elderly Chinese population. Int J Geriatr Psychiatry. 2000;15(9): 824-830. [52] Sled J, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging.1998;17(1):87-97.[53] Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17(3):143-155.[54] Cocosco CA, Zijdenbos AP, Evans AC. A fully automatic and robust brain MRI tissue classification method. Med Image Anal. 2003;7(4):513-527.[55] Han X, Fischl B. Atlas renormalization for improved brain MR image segmentation across scanner platforms. IEEE Trans Med Imaging. 2007;26(4):479-486.[56] Lancaster JL, Tordesillas-Gutiérrez D, Martinez M, et al. Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum Brain Mapp. 2007;28(11):1194-1205.[57] Thirion JP. Image matching as a diffusion process: an analogy with maxwell’s demons. Med Image Anal. 1998; 2(3):243-260.[58] Fischl B, van der Kouwe A, Destrieux C, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004;14(1):11-22.[59] Christensen GE, Joshi SC, Miller MI. Volumetric transformation of brain anatomy. IEEE Trans Med Imaging. 1997;16(6):1369-1383.[60] Venkatasubramanian G, Jayakumar PN, Gangadhar BN, et al. Automated MRI parcellation study of regional volume and thickness of prefrontal cortex (PFC) in antipsychotic-naive schizophrenia. Acta Psychiatr Scand. 2008;117(6):420-431. |
[1] | Gao-Jing Xu, Qun Zhang, Si-Yue Li, Yi-Tong Zhu, Ke-Wei Yu, Chuan-Jie Wang, Hong-Yu Xie, Yi Wu. Environmental enrichment combined with fasudil treatment inhibits neuronal death in the hippocampal CA1 region and ameliorates memory deficits [J]. Neural Regeneration Research, 2021, 16(8): 1460-1466. |
[2] | Mansour Alwjwaj, Rais Reskiawan A. Kadir, Ulvi Bayraktutan. The secretome of endothelial progenitor cells: a potential therapeutic strategy for ischemic stroke [J]. Neural Regeneration Research, 2021, 16(8): 1483-1489. |
[3] | Morgan J. Schaeffer, Leona Chan, Philip A. Barber. The neuroimaging of neurodegenerative and vascular disease in the secondary prevention of cognitive decline [J]. Neural Regeneration Research, 2021, 16(8): 1490-1499. |
[4] | Maral Yeganeh Doost, Benoît Herman, Adrien Denis, Julien Sapin, Daniel Galinski, Audrey Riga, Patrice Laloux, Benoît Bihin, Yves Vandermeeren. Bimanual motor skill learning and robotic assistance for chronic hemiparetic stroke: a randomized controlled trial [J]. Neural Regeneration Research, 2021, 16(8): 1566-1573. |
[5] | Hong Deng, Ye Zhang, Gai-Gai Li, Hai-Han Yu, Shuang Bai, Guang-Yu Guo, Wen-Liang Guo, Yang Ma, Jia-Hui Wang, Na Liu, Chao Pan, Zhou-Ping Tang. P2X7 receptor activation aggravates NADPH oxidase 2-induced oxidative stress after intracerebral hemorrhage [J]. Neural Regeneration Research, 2021, 16(8): 1582-1591. |
[6] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[7] | Wen-Jing Wang, Yan-Biao Zhong, Jing-Jun Zhao, Meng Ren, Si-Cong Zhang, Ming-Shu Xu, Shu-Tian Xu, Ying-Jie Zhang, Chun-Lei Shan. Transcranial pulse current stimulation improves the locomotor function in a rat model of stroke [J]. Neural Regeneration Research, 2021, 16(7): 1229-1234. |
[8] | Faisal F. Alamri, Abdullah Al Shoyaib, Nausheen Syeara, Anisha Paul, Srinidhi Jayaraman, Serob T. Karamyan, Thiruma V. Arumugam, Vardan T. Karamyan. Delayed atomoxetine or fluoxetine treatment coupled with limited voluntary running promotes motor recovery in mice after ischemic stroke [J]. Neural Regeneration Research, 2021, 16(7): 1244-1251. |
[9] | Qiang Gao, Aaron Leung, Yong-Hong Yang, Benson Wui-Man Lau, Qian Wang, Ling-Yi Liao, Yun-Juan Xie, Cheng-Qi He. Extremely low frequency electromagnetic fields promote cognitive function and hippocampal neurogenesis of rats with cerebral ischemia [J]. Neural Regeneration Research, 2021, 16(7): 1252-1257. |
[10] | Yu-Ye Wang, He-Yu Zhang, Wen-Juan Jiang, Fang Liu, Lei Li, Shu-Min Deng, Zhi-Yi He, Yan-Zhe Wang. Genetic polymorphisms in pri-let-7a-2 are associated with ischemic stroke risk in a Chinese Han population from Liaoning, China: a case-control study [J]. Neural Regeneration Research, 2021, 16(7): 1302-1307. |
[11] | Martin A. Schick, Malgorzata Burek, Carola Y. Förster, Michiaki Nagai, Christian Wunder, Winfried Neuhaus. Hydroxyethylstarch revisited for acute brain injury treatment [J]. Neural Regeneration Research, 2021, 16(7): 1372-1376. |
[12] | Hui-Ling Wang, Fei-Lai Liu, Rui-Qing Li, Ming-Yue Wan, Jie-Ying Li, Jing Shi, Ming-Li Wu, Jun-Hua Chen, Wei-Juan Sun, Hong-Xia Feng, Wei Zhao, Jin Huang, Ren-Chao Liu, Wen-Xue Hao, Xiao-Dong Feng. Electroacupuncture improves learning and memory functions in a rat cerebral ischemia/reperfusion injury model through PI3K/Akt signaling pathway activation [J]. Neural Regeneration Research, 2021, 16(6): 1011-1016. |
[13] | Zhe Cheng, Feng-Wu Li, Christopher R. Stone, Kenneth Elkin, Chang-Ya Peng, Redina Bardhi, Xiao-Kun Geng, Yu-Chuan Ding. Normobaric oxygen therapy attenuates hyperglycolysis in ischemic stroke [J]. Neural Regeneration Research, 2021, 16(6): 1017-1023. |
[14] | Riccardo Manca, Micaela Mitolo, Iain D. Wilkinson, David Paling, Basil Sharrack, Annalena Venneri. A network-based cognitive training induces cognitive improvements and neuroplastic changes in patients with relapsing-remitting multiple sclerosis: #br# an exploratory case-control study#br# [J]. Neural Regeneration Research, 2021, 16(6): 1111-1120. |
[15] | Giuseppe Cappellano, Domizia Vecchio, Luca Magistrelli, Nausicaa Clemente, Davide Raineri, Camilla Barbero Mazzucca, Eleonora Virgilio, Umberto Dianzani, Annalisa Chiocchetti, Cristoforo Comi. The Yin-Yang of osteopontin in nervous system diseases: damage versus repair [J]. Neural Regeneration Research, 2021, 16(6): 1131-1137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||