Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (5): 461-468.doi: 10.3969/j.issn.1673-5374.2013.05.010
Previous Articles Next Articles
Xiaona Wu, Zhensheng Li, Xiaoyan Liu, Haiyan Peng, Yongjun Huang, Gaoquan Luo, Kairun Peng
Received:
2012-11-08
Revised:
2013-01-17
Online:
2013-02-15
Published:
2013-02-15
Contact:
Kairun Peng, Master, Chief physician, Department of Neurology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, Guangdong Province, China, 13889902718@139.com.
About author:
Xiaona Wu★, Master, Attending physician.
Supported by:
This study was supported by the Guangdong Province Medical Science Research Fund, No. B200258.
Xiaona Wu, Zhensheng Li, Xiaoyan Liu, Haiyan Peng, Yongjun Huang, Gaoquan Luo, Kairun Peng. Major ozonated autohemotherapy promotes the recovery of upper limb motor function in patients with acute cerebral infarction[J]. Neural Regeneration Research, 2013, 8(5): 461-468.
[1] Giunta R, Coppola A, Luongo C, et al. Ozonized autohemotransfusion improves hemorheological parameters and oxygen delivery to tissues in patients with peripheral occlusive arterial disease. Ann Hematol. 2001; 80(12):745-748.[2] Romero Valdés A, Menéndez Cepero S, Gómez Moraleda M, et al. Ozone therapy in the advanced stages of arteriosclerosis obliterans. Angiología. 1993;45(4):146-148.[3] Bocci V. The case for oxygen-ozone therapy. Br J Biomed Sci. 2007;64(1):44-49. [4] Bocci V, Borrelli E, Travagli V, et al. The ozone paradox: ozone is a strong oxidant as well as a medical drug. Med Res Rev. 2009;29(4):646-682. [5] Tylicki L, Niew GT, Biedunkiewicz B, et al. Beneficial clinical effects of ozonated autohemotherapy in chronically dialysed patients with atherosclerotic ischemia of the lower limbs. Int J Artif Organs. 2001;24(2):79-82. [6] Clavo B, Perez JL, Lopez L, et al. Effect of ozone therapy on muscle oxygenation. J Altern Compl Med. 2003;9(2): 251-256. [7] Biedunkiewicz B, Tylicki L, Niewegloski T, et al. Clinical efficacy of ozonated autohemotherapy in hemo-dialyzed patients with intermittent claudication: an oxygen- controlled study. Int J Artif Organs. 2004;27(1):29-34.[8] De Monte A, van der Zee H, Bocci V. Major ozonated autohemotherapy in chronic limb ischemia with ulcerations. J Alt Compl Med. 2005;11(2):363-367. [9] Marfella R, Luongo C, Coppola A, et al. Use of a non-specific immunomodulation therapy as a therapeutic vasculogenesis strategy in no-option critical limb ischemia patients. Atherosclerosis. 2010;208(2):473-479. [10] Hoffmann A, Viebahn R. The influence of ozone on 2,3 diphosphoglycerate synthesis in red blood cell concentrates. Proceedings of the 15th ozone world congress, Imperial College London. 2001.[11] Valacchi G and Bocci V. Study on the biological effects of ozone: 10. Release of factors from ozonated human platelets. Mediators Inflamm. 1999;8(4-5):205-209. [12] Guo YB. Medical ozone application in clinical medicine. Zhonghua Shiyan he Linchuang Ganranbing Zazhi: Dianzi Ban. 2008;2(1):105-109.[13] Shiratori R, Kaneko Y, Kobayashi Y, et al. Can ozone administration activate the tissue metabolism?--A study on brain metabolism during hypoxic hypoxia. Masui. 1993; 42(1):2-6.[14] Granger DN, Rutili G, McCord JM. Superoxide radicals in feline intestinal ischemia. Gastroenterology. 1981;81(1): 22-29. [15] Watanabe T, Egawa M. Effects of an antistroke agent MCI-186 on cerebral arachidonate cascade. J Pharmacol Exp Ther. 1994;271(3):1624-1629. [16] Chen H, Xing B, Liu X, et al. Ozone oxidative preconditioning protects the rat kidney from reperfusion injury: the role of nitric oxide. J Surg Res. 2008;149(2):287-295. [17] Calunga JL, Trujillo Y, Menendez S, et al. Ozone oxidative post-conditioning in acute renal failure. J Pharm Pharmacol. 2009;61(2):221-227. [18] Kenan K, Yuksel Y, Serkan B, et al. Effect of preconditioned hyperbaric oxygen and ozone on ischemia-reperfusion induced tourniquet in skeletal bone of rats. J Surg Res. 2010;164(1):83-89. [19] Bocci V, Zanardi I, Maya SP, et al. Diabetes and chronic oxidative stress. A perspective based on the possible usefulness of ozone therapy. Diabetes Metab Syndr. 2011;5(1):45-49.[20] Clavo B, Catalá L, Pérez JL, et al. Ozone therapy on cerebral blood flow: a preliminary report. Evid Based Complement Alternat Med. 2004;1(3):315-319. [21] Liu Y, Liu QY, Cui YG, et al. Evaluation of the efficacy of High-pressure ozone on acute cerebral infarction. Zhongguo Dangdai Yiyao. 2009;16(12):40-41.[22] Koca K, Yurttas Y, Bilgic S, et al. Effect of preconditioned hyperbaric oxygen and ozone on ischemia-reperfusion induced tourniquet in skeletal bone of rats. J Surg Res. 2010;164(1):83-89. [23] Hess CW, Mills KR, Murray MN. Responses in small hand muscles from magnetic stimulation of human brain. J Physiol. 1987;388(7):397-419. [24] Heald A, Bates D, Cartlidge NE, et al. Longitudinal study of central motor conduction time following stroke, II: central motor conduction measured within 72 h after stroke as a predictor of functional outcome at 12 months. Brain. 1993;116(6):1371-1385. [25] Ferbert A, Viehaber S, Meincke U, et al. Transcranial magnetic stimulation in pontine infarction: correlation to degree of paresis. J Neurol Neurosurg Psychiatry. 1992; 55(4):294-299. [26] State Council of the People's Republic of China. Administrative Regulations on Medical Institution. 1994-09-01. [27] Harold P, Adams Jr, Robert J, et al. Guidelines for the early management of patients with ischemic stroke: a scientific statement from the stroke council of the American stroke association. Stroke. 2003;34(4): 1056-1083. [28] Lai SM, Duncan PW. Stroke recovery profile and the Modified Rankin assessment. Neuroepidemiology. 2001; 20(1):26-30.[29] Catano A, Houa M, Caroyer JM, et al. Magnetic transcranial stimulation in non-haemorrhagic sylvian strokes: interest of facilitation for early functional prognosis. Electroencephalogr Clin Neurophysiol. 1995; 97(12):349-354. |
[1] | Maral Yeganeh Doost, Benoît Herman, Adrien Denis, Julien Sapin, Daniel Galinski, Audrey Riga, Patrice Laloux, Benoît Bihin, Yves Vandermeeren. Bimanual motor skill learning and robotic assistance for chronic hemiparetic stroke: a randomized controlled trial [J]. Neural Regeneration Research, 2021, 16(8): 1566-1573. |
[2] | Shi-Qin Lv, Wutian Wu. ISP and PAP4 peptides promote motor functional recovery after peripheral nerve injury [J]. Neural Regeneration Research, 2021, 16(8): 1598-1605. |
[3] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[4] | Wen-Jing Wang, Yan-Biao Zhong, Jing-Jun Zhao, Meng Ren, Si-Cong Zhang, Ming-Shu Xu, Shu-Tian Xu, Ying-Jie Zhang, Chun-Lei Shan. Transcranial pulse current stimulation improves the locomotor function in a rat model of stroke [J]. Neural Regeneration Research, 2021, 16(7): 1229-1234. |
[5] | Dulce Parra-Villamar, Liliana Blancas-Espinoza, Elisa Garcia-Vences, Juan Herrera-García, Adrian Flores-Romero, Alberto Toscano-Zapien, Jonathan Vilchis Villa, Rodríguez Barrera-Roxana, Soria Zavala Karla, Antonio Ibarra, Raúl Silva-García. Neuroprotective effect of immunomodulatory peptides in rats with traumatic spinal cord injury [J]. Neural Regeneration Research, 2021, 16(7): 1273-1280. |
[6] | Allison S. Liang, Joanna E. Pagano, Christopher A. Chrzan, Randall D. McKinnon. Suicide transport blockade of motor neuron survival generates a focal graded injury and functional deficit [J]. Neural Regeneration Research, 2021, 16(7): 1281-1287. |
[7] | Ying Li, Juan-Xian Cheng, Hai-Hong Yang, Li-Ping Chen, Feng-Jiao Liu, Yan Wu, Ming Fan, Hai-Tao Wu. Transferrin receptor 1 plays an important role in muscle development and denervation-induced muscular atrophy [J]. Neural Regeneration Research, 2021, 16(7): 1308-1316. |
[8] | Rong Li, Zu-Cheng Huang, Hong-Yan Cui, Zhi-Ping Huang, Jun-Hao Liu, Qing-An Zhu, Yong Hu. Utility of somatosensory and motor-evoked potentials in reflecting gross and fine motor functions after unilateral cervical spinal cord contusion injury [J]. Neural Regeneration Research, 2021, 16(7): 1323-1330. |
[9] | Ke-Ke Chen, Zhao-Hui Jin, Lei Gao, Lin Qi, Qiao-Xia Zhen, Cui Liu, Ping Wang, Yong-Hong Liu, Rui-Dan Wang, Yan-Jun Liu, Jin-Ping Fang, Yuan Su, Xiao-Yan Yan, Ai-Xian Liu, Bo-Yan Fang. Efficacy of short-term multidisciplinary intensive rehabilitation in patients with different Parkinson’s disease motor subtypes: a prospective pilot study with 3-month follow-up [J]. Neural Regeneration Research, 2021, 16(7): 1336-1343. |
[10] | Akira Nakashima, Takefumi Moriuchi, Daiki Matsuda, Takashi Hasegawa, Jirou Nakamura, Kimika Anan, Katsuya Satoh, Tomotaka Suzuki, Toshio Higashi, Kenichi Sugawara. Corticospinal excitability during motor imagery is diminished by continuous repetition-induced fatigue [J]. Neural Regeneration Research, 2021, 16(6): 1031-1036. |
[11] | Jian Zhang, Ren-Jie Wang, Miao Chen, Xiao-Yin Liu, Ke Ma, Hui-You Xu, Wu-Sheng Deng, Yi-Chao Ye, Wei-Xin Li, Xu-Yi Chen, Hong-Tao Sun. Collagen/heparan sulfate porous scaffolds loaded with neural stem cells improve neurological function in a rat model of traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(6): 1068-1077. |
[12] | Yun-Juan Xie, Yi Chen, Hui-Xin Tan, Qi-Fan Guo, Benson Wui-Man Lau, Qiang Gao. Repetitive transcranial magnetic stimulation for lower extremity motor function in patients with stroke: a systematic review and network meta-analysis [J]. Neural Regeneration Research, 2021, 16(6): 1168-1176. |
[13] | Zhongwu Liu, Hongqi Xin, Michael Chopp. Axonal remodeling of the corticospinal tract during neurological recovery after stroke [J]. Neural Regeneration Research, 2021, 16(5): 939-943. |
[14] | Lu-Xia Ye, Ning-Chen An, Peng Huang, Duo-Hui Li, Zhi-Long Zheng, Hao Ji, Hao Li, Da-Qing Chen, Yan-Qing Wu, Jian Xiao, Ke Xu, Xiao-Kun Li, Hong-Yu Zhang. Exogenous platelet-derived growth factor improves neurovascular unit recovery after spinal cord injury [J]. Neural Regeneration Research, 2021, 16(4): 757-763. |
[15] | Moemi Matsuo, Naoki Iso, Kengo Fujiwara, Takefumi Moriuchi, Daiki Matsuda, Wataru Mitsunaga, Akira Nakashima, Toshio Higashi. Comparison of cerebral activation between motor execution and motor imagery of self-feeding activity [J]. Neural Regeneration Research, 2021, 16(4): 770-774. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||