Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (7): 609-615.doi: 10.3969/j.issn.1673-5374.2013.07.004
Previous Articles Next Articles
Zhaoliang Liang, Fei Gao, Fajun Wang, Xiaochen Wang, Xinyu Song, Kejing Liu, Ren-Zhi Zhan
Received:
2012-10-31
Revised:
2013-01-17
Online:
2013-03-05
Published:
2013-03-05
Contact:
Ren-Zhi Zhan, M.D., Professor, Institute of Physiology, Shandong University School of Medicine, Jinan 250012, Shandong Province, China, zhan0001@sdu.edu.cn.
About author:
Zhaoliang Liang★, Studying for master’s degree.
Supported by:
This study was supported by grants from the Self-innovation Programs of Shandong University, No. 1000069961016; and the National Natural Science Foundation of China, No. 81171231.
Zhaoliang Liang, Fei Gao, Fajun Wang, Xiaochen Wang, Xinyu Song, Kejing Liu, Ren-Zhi Zhan. Status epilepticus increases mature granule cells in the molecular layer of the dentate gyrus in rats[J]. Neural Regeneration Research, 2013, 8(7): 609-615.
[1] Dichter MA. Emerging concepts in the pathogenesis of epilepsy and epileptogenesis. Arch Neurol. 2009; 66(4):443-447. [2] Bengzon J, Kokaia Z, Elmer E, et al. Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci U S A. 1997;94(19):10432-10437.[3] Parent JM, Yu TW, Leibowitz RT, et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci. 1997;17(10):3727-3738.[4] Scharfman HE, Goodman JH, Sollas AL. Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J Neurosci. 2000;20(16):6144-6158.[5] Muramatsu R, Ikegaya Y, Matsuki N, et al. Early-life status epilepticus induces ectopic granule cells in adult mice dentate gyrus. Exp Neurol. 2008;211(2):503-510.[6] Jessberger S, Zhao C, Toni N, et al. Seizure-associated, aberrant neurogenesis in adult rats characterized with retrovirus mediated cell labeling. J Neurosci. 2007; 27(35):9400-9407.[7] Cameron MC, Zhan RZ, Nadler JV. Morphologic integration of hilar ectopic granule cells into dentate gyrus circuitry in the pilocarpine model of temporal lobe epilepsy. J Comp Neurol. 2011;519(11):2175-2192.[8] Parent JM, Elliott RC, Pleasure SJ, et al. Aberrant seizure induced aberrant neurogenesis in experimental temporal lobe epilepsy. Ann Neurol. 2006;59(1):81-91.[9] Zhan RZ, Nadler JV. Enhanced tonic GABA current in normotopic and hilar ectopic dentate granule cells after pilocarpine-induced status epilepticus. J Neurophysiol. 2009;102(2):670-681.[10] Kron M, Zhang H, Parent JM. The developmental stage of dentate granule cells dictates their contributions to seizure-induced plasticity. J Neurosci. 2010;30(6): 2051-2059.[11] Scharfman HE, Goodman JH, McCloskey DP. Ectopic granule cells of the rat dentate gyrus. Dev Neurosci. 2007; 29(1-2):14-27.[12] Kokaia M. Seizure induced neurogenesis in the adult brain. Euro J Neurosci. 2011;33(6):1133-1138.[13] McCloskey DP, Hintz TM, Pierce JP, et al. Stereological methods reveal the robust size and stability of ectopic hilar granule cells after pilocarpine-induced status epilepticus in the adult rat. Eur J Neurosci. 2006;24(8): 2203-2210. [14] Scharfman HE, Sollas AL, Berger RE, et al. Perforant path activation of ectopic granue cells that are born after pilocarpine-induced status epilepticus. Neuroscience. 2003;121(4):1017-1029.[15] Murphy BL, Pun RYK, Yin H, et al. Heterogeneous integration of adult-generated granule cells into the epileptic brain. J Neurosci. 2010;31(1):105-117. [16] Ribak CE, Tran PH, Spigelman I, et al. Status epilepticus- induced hilar basal dendrites on rodent granule cells contribute to recurrent excitatory circuitry. J Comp Neurol. 2000;428(2):240-253.[17] Thind KK, Ribak CE, Buckmaster PS. Synaptic input to dentate granule cell basal dendrites in a rat model of temporal lobe epilepsy. J Comp Neurol. 2008;509(2): 190-202.[18] Pierce JP, Melton J, Punsoni M, et al. Mossy fibers are the primary source of afferent input to ectopic granule cells that are born after pilocarpine-induced seizures. Exp Neurol. 2005;196(2):316-331.[19] Zhan R-Z, Timofeeva O, Nadler JV. High ratio of synaptic excitation to synaptic inhibition in hilar ectopic granule cells of pilocarpine-treated rats. J Neurophysiol. 2010; 104(6):3293-3304.[20] Blümcke I, Kistner I, Clusmann H, et al. Towards a clinico-pathological classification of granule cell dispersion in human mesial temporal lobe epilepsies. Acta Neuropathol. 2009;117(5):535-544.[21] Ekdahl CT, Zhu C, Bonde S, et al. Death mechanisms in status epilepticus-generated neurons and effects of additional seizures on their survival. Neurobiol Dis. 2003; 14(3):513-523.[22] Gleeson JG, Lin PT, Flanagan LA, et al. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron. 1999;23(2):257-271.[23] von Bohlen Und Halbach O. Immunohistological markers for staging neurogenesis in adult hippocampus. Cell Tissue Res. 2007;329(3):409-420.[24] Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011;70(4):687-702.[25] Jinno S. Topographic differences in adult neurogenesis in the mouse hippocampus: a stereology-based study using endogenous markers. Hippocampus. 2011;21(5):467-480.[26] The Ministry of Science and Technology of the People’s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30.[27] Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32(3):281-294.[28] Racine RJ, Rose PA, Burnham WM. Afterdischarge thresholds and kindling rates in dorsal and ventral hippocampus and dentate gyrus. Can J Neurol Sci. 1977; 4(4):273-278.[29] Ekstrand JJ, Pouliot W, Scheerlinck P, et al. Lithium pilocarpine-induced status epilepticus in postnatal day 20 rats results in greater neuronal injury in ventral versus dorsal hippocampus. Neuroscience. 2011;192(29): 699-707. |
[1] | Gao-Jing Xu, Qun Zhang, Si-Yue Li, Yi-Tong Zhu, Ke-Wei Yu, Chuan-Jie Wang, Hong-Yu Xie, Yi Wu. Environmental enrichment combined with fasudil treatment inhibits neuronal death in the hippocampal CA1 region and ameliorates memory deficits [J]. Neural Regeneration Research, 2021, 16(8): 1460-1466. |
[2] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[3] | Qiang Gao, Aaron Leung, Yong-Hong Yang, Benson Wui-Man Lau, Qian Wang, Ling-Yi Liao, Yun-Juan Xie, Cheng-Qi He. Extremely low frequency electromagnetic fields promote cognitive function and hippocampal neurogenesis of rats with cerebral ischemia [J]. Neural Regeneration Research, 2021, 16(7): 1252-1257. |
[4] | Dae Young Yoo, Hyo Young Jung, Woosuk Kim, Kyu Ri Hahn, Hyun Jung Kwon, Sung Min Nam, Jin Young Chung, Yeo Sung Yoon, Dae Won Kim, In Koo Hwang. Entacapone promotes hippocampal neurogenesis in mice [J]. Neural Regeneration Research, 2021, 16(6): 1005-1010. |
[5] | Ning Liu, Liang Zeng, Yi-Ming Zhang, Wang Pan, Hong Lai. Astaxanthin alleviates pathological brain aging through the upregulation of hippocampal synaptic proteins [J]. Neural Regeneration Research, 2021, 16(6): 1062-1067. |
[6] | Jian-Zhu Bo, Ling Xue, Shuang Li, Jing-Wen Yin, Zheng-Yao Li, Xi Wang, Jun-Feng Wang, Yan-Shu Zhang. D-serine reduces memory impairment and neuronal damage induced by chronic lead exposure [J]. Neural Regeneration Research, 2021, 16(5): 836-841. |
[7] | Mariam Rizk, Justin Vu, Zhi Zhang. Impact of pediatric traumatic brain injury on hippocampal neurogenesis [J]. Neural Regeneration Research, 2021, 16(5): 926-933. |
[8] | Magdalini Tsintou, Kyriakos Dalamagkas, Tara L. Moore, Yogesh Rathi, Marek Kubicki, Douglas L. Rosene, Nikos Makris. The use of hydrogel-delivered extracellular vesicles in recovery of motor function in stroke: a testable experimental hypothesis for clinical translation including behavioral and neuroimaging assessment approaches [J]. Neural Regeneration Research, 2021, 16(4): 605-613. |
[9] | Jian Liu, Yuan-Shan Han, Lin Liu, Lin Tang, Hui Yang, Pan Meng, Hong-Qing Zhao, Yu-Hong Wang. Abnormal Glu/mGluR2/3/PI3K pathway in the hippocampal neurovascular unit leads to diabetes-related depression [J]. Neural Regeneration Research, 2021, 16(4): 727-733. |
[10] | Ijair R.C. dos Santos, Michelle Nerissa C. Dias, Walace Gomes-Leal. Microglial activation and adult neurogenesis after brain stroke [J]. Neural Regeneration Research, 2021, 16(3): 456-459. |
[11] | Joseph A. Shehadi, Steven M. Elzein, Paul Beery, M. Chance Spalding, Michelle Pershing. Combined administration of platelet rich plasma and autologous bone marrow aspirate concentrate for spinal cord injury: a descriptive case series [J]. Neural Regeneration Research, 2021, 16(2): 362-366. |
[12] | Na-Ying Xue, Dong-Yu Ge, Rui-Juan Dong, Hyung-Hwan Kim, Xiu-Jun Ren, , Ya Tu. Effect of electroacupuncture on glial fibrillary acidic protein and nerve growth factor in the hippocampus of rats with hyperlipidemia and middle cerebral artery thrombus [J]. Neural Regeneration Research, 2021, 16(1): 137-142. |
[13] | Mo-Xian Chen, Qiang Liu, Shu Cheng, Lei Lei, Ai-Jin Lin, Ran Wei, Tomy C.K. Hui , Qi Li , Li-Juan Ao, Pak C. Sham . Interleukin-18 levels in the hippocampus and behavior of adult rat offspring exposed to prenatal restraint stress during early and late pregnancy [J]. Neural Regeneration Research, 2020, 15(9): 1748-1756. |
[14] | Susan R. Goulding, Aideen M. Sullivan , Gerard W. O’Keeffe , Louise M. Collins. The potential of bone morphogenetic protein 2 as a neurotrophic factor for Parkinson’s disease [J]. Neural Regeneration Research, 2020, 15(8): 1432-1436. |
[15] | Ya Zheng, Ye-Ran Mao, Ti-Fei Yuan , Dong-Sheng Xu , Li-Ming Cheng. Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation [J]. Neural Regeneration Research, 2020, 15(8): 1437-1450. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||