[1] |
Tayana Silva de Carvalho.
Calorie restriction or dietary restriction: how far they can protect the brain against neurodegenerative diseases?
[J]. Neural Regeneration Research, 2022, 17(8): 1640-1644.
|
[2] |
Angie K. Torres, Bastián I. Rivera, Catalina M. Polanco, Claudia Jara, Cheril Tapia-Rojas.
Phosphorylated tau as a toxic agent in synaptic mitochondria: implications in aging and Alzheimer’s disease
[J]. Neural Regeneration Research, 2022, 17(8): 1645-1651.
|
[3] |
Carmen M. Labandeira, Arturo Fraga-Bau, David Arias Ron, Elena Alvarez-Rodriguez, Pablo Vicente-Alba, Javier Lago-Garma, Ana I. Rodriguez-Perez.
Parkinson’s disease and diabetes mellitus: common mechanisms and treatment repurposing
[J]. Neural Regeneration Research, 2022, 17(8): 1652-1658.
|
[4] |
Alejandro R. Roda, Gabriel Serra-Mir, Laia Montoliu-Gaya, Lidia Tiessler, Sandra Villegas.
Amyloid-beta peptide and tau protein crosstalk in Alzheimer’s disease
[J]. Neural Regeneration Research, 2022, 17(8): 1666-1674.
|
[5] |
Fatemeh Zahedipour, Seyede Atefe Hosseini, Neil C. Henney, George E. Barreto, Amirhossein Sahebkar.
Phytochemicals as inhibitors of tumor necrosis factor alpha and neuroinflammatory responses in neurodegenerative diseases
[J]. Neural Regeneration Research, 2022, 17(8): 1675-1684.
|
[6] |
Wei-Tao Yan, Yan-Di Yang, Xi-Min Hu, Wen-Ya Ning, Lyu-Shuang Liao, Shuang Lu, Wen-Juan Zhao, Qi Zhang, Kun Xiong.
Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies
[J]. Neural Regeneration Research, 2022, 17(8): 1761-1768.
|
[7] |
Xi-Chen Zhu, Lu Liu, Wen-Zhuo Dai, Tao Ma.
Crry silencing alleviates Alzheimer’s disease injury by regulating neuroinflammatory cytokines and the complement system
[J]. Neural Regeneration Research, 2022, 17(8): 1841-1849.
|
[8] |
M. N. Afzal Khan, Usman Ghafoor, Ho-Ryong Yoo, Keum-Shik Hong.
Acupuncture enhances brain function in patients with mild cognitive impairment: evidence from
a functional-near infrared spectroscopy study
[J]. Neural Regeneration Research, 2022, 17(8): 1850-1856.
|
[9] |
Bridget Martinez, Philip V. Peplow.
MicroRNA biomarkers in frontotemporal dementia and to distinguish from Alzheimer’s disease and amyotrophic lateral sclerosis
[J]. Neural Regeneration Research, 2022, 17(7): 1412-1422.
|
[10] |
Santiago E. Charif, M. Florencia Vassallu, Lara Salvañal, Lionel M. Igaz.
Protein synthesis modulation as a therapeutic approach for amyotrophic lateral sclerosis and frontotemporal dementia
[J]. Neural Regeneration Research, 2022, 17(7): 1423-1430.
|
[11] |
Tao Wang, Jian-Cheng Liao, Xu Wang, Qing-Song Wang, Kai-Ying Wan, Yi-Yi Yang, Qing He, Jia-Xuan Zhang, Gong Chen, Wen Li.
Unexpected BrdU inhibition on astrocyte-to-neuron conversion
[J]. Neural Regeneration Research, 2022, 17(7): 1526-1534.
|
[12] |
Bart Nieuwenhuis, Richard Eva.
Promoting axon regeneration in the central nervous system by increasing PI3-kinase signaling
[J]. Neural Regeneration Research, 2022, 17(6): 1172-1182.
|
[13] |
Carely Hernandez, Surabhi Shukla.
Liposome based drug delivery as a potential treatment option for Alzheimer’s disease
[J]. Neural Regeneration Research, 2022, 17(6): 1190-1198.
|
[14] |
Yi-Yao Liang, Li-Dan Zhang, Xi Luo, Li-Li Wu, Zhao-Wei Chen, Guang-Hao Wei, Kai-Qing Zhang, Ze-An Du, Ren-Zhi Li, Kwok-Fai So, Ang Li.
All roads lead to Rome — a review of the potential mechanisms by which exerkines exhibit neuroprotective effects in Alzheimer’s disease
[J]. Neural Regeneration Research, 2022, 17(6): 1210-1227.
|
[15] |
Dai-Di Li, Chang-Qing Zheng, Feng Zhang, Jing-Shan Shi.
Potential neuroprotection by Dendrobium nobile Lindl alkaloid in Alzheimer’s disease models
[J]. Neural Regeneration Research, 2022, 17(5): 972-977.
|