Neural Regeneration Research ›› 2023, Vol. 18 ›› Issue (5): 976-982.doi: 10.4103/1673-5374.355743

Previous Articles     Next Articles

Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy

Lei Tang1, Guo-Tong Xu1, *, Jing-Fa Zhang2, 3, *   

  1. 1Department of Ophthalmology of Tongji Hospital, Tongji Eye Institute, Department of Regenerative Medicine, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China;  2Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University, Shanghai, China;  3National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
  • Online:2023-05-15 Published:2022-11-01
  • Contact: Guo-Tong Xu, MD, PhD, gtxu@tongji.edu.cn; Jing-Fa Zhang, MD, PhD, 13917311571@139.com.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China, No. 82171062 (to JFZ).

Abstract: Diabetic retinopathy, characterized as a microangiopathy and neurodegenerative disease, is the leading cause of visual impairment in diabetic patients. Many clinical features observed in diabetic retinopathy, such as capillary occlusion, acellular capillaries and retinal non-perfusion, aggregate retinal ischemia and represent relatively late events in diabetic retinopathy. In fact, retinal microvascular injury is an early event in diabetic retinopathy involving multiple biochemical alterations, and is manifested by changes to the retinal neurovascular unit and its cellular components. Currently, intravitreal anti-vascular endothelial growth factor therapy is the first-line treatment for diabetic macular edema, and benefits the patient by decreasing the edema and improving visual acuity. However, a significant proportion of patients respond poorly to anti-vascular endothelial growth factor treatments, indicating that factors other than vascular endothelial growth factor are involved in the pathogenesis of diabetic macular edema. Accumulating evidence confirms that low-grade inflammation plays a critical role in the pathogenesis and development of diabetic retinopathy as multiple inflammatory factors, such as interleukin-1β, monocyte chemotactic protein-1 and tumor necrosis factor -α, are increased in the vitreous and retina of diabetic retinopathy patients. These inflammatory factors, together with growth factors such as vascular endothelial growth factor, contribute to blood-retinal barrier breakdown, vascular damage and neuroinflammation, as well as pathological angiogenesis in diabetic retinopathy, complicated by diabetic macular edema and proliferative diabetic retinopathy. In addition, retinal cell types including microglia, Müller glia, astrocytes, retinal pigment epithelial cells, and others are activated, to secrete inflammatory mediators, aggravating cell apoptosis and subsequent vascular leakage. New therapies, targeting these inflammatory molecules or related signaling pathways, have the potential to inhibit retinal inflammation and prevent diabetic retinopathy progression. Here, we review the relevant literature to date, summarize the inflammatory mechanisms underlying the pathogenesis of diabetic retinopathy, and propose inflammation-based treatments for diabetic retinopathy and diabetic macular edema.

Key words: anti-inflammation therapy, anti-vascular endothelial growth factor, diabetic retinopathy, hyperreflectivity foci, inflammation, inflammatory cells, inflammatory cytokines, leukostasis, microglia, Müller cells