Neural Regeneration Research ›› 2025, Vol. 20 ›› Issue (10): 2915-2916.doi: 10.4103/NRR.NRR-D-24-00711

Previous Articles     Next Articles

Beyond neurodegeneration: engineering amyloids for biocatalysis

Andrea Bartolomé-Nafría, Javier García-Pardo* , Salvador Ventura*   

  1. Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain (Bartolomé-Nafría A, García-Pardo J, Ventura S) Hospital Universitari Parc Taulí, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain (Ventura S)
  • Online:2025-10-15 Published:2025-02-08
  • Contact: Javier García-Pardo, PhD, javier.garcia.pardo@uab.cat; Salvador Ventura, PhD, salvador.ventura@uab.cat.

Abstract: Amyloid fibrils are highly organized protein or peptide aggregates, often characterized by a distinctive supramolecular cross-β-sheet structure. The formation and accumulation of these structures have been traditionally associated with neural or systemic human diseases, such as Alzheimer’s disease, Parkinson’s disease, type2 diabetes, or amyotrophic lateral sclerosis (Wei et al., 2017; Wittung-Stafshede, 2023). However, evidence exists that the amyloid fold is also exploited by nature to perform several functional, nonpathogenic roles across all kingdoms of life. For example, amyloids contribute to biofilm formation in bacteria (Peña‐Díaz et al., 2024) or are involved in the regulation of transcription and alternative splicing in humans. As a general trend, amyloids display highly rigid structures with high chemical and mechanical stability, which makes them ideal scaffolds for the design of novel nanostructured materials.