Neural Regeneration Research ›› 2012, Vol. 7 ›› Issue (35): 2770-2777.doi: 10.3969/j.issn.1673-5374.2012.35.004
Previous Articles Next Articles
Sumeng Liu1, Wu Liu2, Yaling Ma1, Kegao Liu2, Meizi Wang2
Received:
2012-08-22
Revised:
2012-11-09
Online:
2012-12-15
Published:
2012-11-09
Contact:
Wu Liu, M.D., Professor, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Lab, Beijing 100730, China; Yaling Ma, M.D., Professor, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China wuliubj@yahoo.com; myleye@hotmail.com
About author:
Sumeng Liu☆, Studying for doctorate, General Hospital of Ningxia Medical University,Yinchuan 750004, Ningxia Hui Autonomous Region,China
Sumeng Liu, Wu Liu, Yaling Ma, Kegao Liu, Meizi Wang. Suprachoroidal injection of ketorolac tromethamine does not cause retinal damage[J]. Neural Regeneration Research, 2012, 7(35): 2770-2777.
[1] Sivaprasad S, Bunce C, Wormald R. Non-steroidal anti-inflammatory agents for cystoid macular oedema following cataract surgery: a systematic review. Br J Ophthalmol. 2005;89(11):1420-1422.[2] Lynn AM, Bradford H, Kantor ED, et al. Ketorolac tromethamine: stereo-specific pharmacokinetics and single-dose use in postoperative infants aged 2-6 months. Paediatr Anaesth. 2011;21(3):325-334.[3] Attar M, Schiffman R, Borbridge L, et al. Ocular pharmacokinetics of 0.45% ketorolac tromethamine. Clin Ophthalmol. 2010;4:1403-1408.[4] Lin TF, Lin FS, Chou WH, et al. Compatibility and stability of binary mixtures of ketorolac tromethamine and tramadol hydrochloride injection concentrate and diluted infusion solution. Acta Anaesthesiol Taiwan. 2010;48(3): 117-121.[5] Salaris M, Nieddu M, Rubattu N, et al. Acid and base degraded products of ketorolac. J Pharm Biomed Anal. 2010;52(2):320-322. [6] Sinha VR, Kumar RV, Singh G. Ketorolac tromethamine formulations: an overview. Expert Opin Drug Deliv. 2009; 6(9):961-975.[7] Rifkin L, Schaal S. Shortening ocular pain duration following intravitreal injections. Eur J Ophthalmol. 2012; 22(6):1008-1012. [8] Sivaprasad S, Bunce C, Patel N. Non-steroidal anti-inflammatory agents for treating cystoid macular oedema following cataract surgery. Cochrane Database Syst Rev. 2005;(1):CD004239.[9] Yilmaz T, Cordero-Coma M, Gallagher MJ. Ketorolac therapy for the prevention of acute pseudophakic cystoid macular edema: a systematic review. Eye (Lond). 2012; 26(2):252-258. [10] Despriet DD, Klaver CC, Witteman JC, et al. Complement factor H polymorphism, complement activators, and risk of age-related macular degeneration. JAMA. 2006;296(3): 301-309.[11] Joussen AM, Poulaki V, Mitsiades N, et al. Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression. FASEB J. 2002;16(3): 438-440. [12] Zanetti FR, Fulco EA, Chaves FR, et al. Effect of preoperative use of topical prednisolone acetate, ketorolac tromethamine, nepafenac and placebo, on the maintenance of intraoperative mydriasis during cataract surgery: a randomized trial. Indian J Ophthalmol. 2012; 60(4):277-281.[13] Kim SJ, Doherty TJ, Cherney EF. Intravitreal ketorolac for chronic uveitis and macular edema: a pilot study. Arch Ophthalmol. 2012;130(4):456-460.[14] Snyder MB, Bregmen DB. SPRIX (ketorolac tromethamine) nasal spray: a novel nonopioid alternative for managing moderate to moderately severe dental pain. Compend Contin Educ Dent. 2012;33 Spec No 1(1):2-11.[15] Sivaprasad S, Bunce C, Crosby-Nwaobi R. Non-steroidal anti-inflammatory agents for treating cystoid macular oedema following cataract surgery. Cochrane Database Syst Rev. 2012;2:CD004239.[16] Turan-Vural E, Torun-Acar B, Acar S. Effect of ketorolac add-on treatment on intra-ocular pressure in glaucoma patients receiving prostaglandin analogues. Ophthalmologica. 2012;227(4):205-209. [17] Gianesello L, Pavoni V, Barboni E, et al. Perioperative pregabalin for postoperative pain control and quality of life after major spinal surgery. J Neurosurg Anesthesiol. 2012; 24(2):121-126. [18] Wang XJ, Wong SH, Givergis R, et al. Evaluation of analgesic efficacy of bromfenac sodium ophthalmic solution 0.09% versus ketorolac tromethamine ophthalmic solution 0.5% following LASEK or Epi-LASIK. Clin Ophthalmol. 2011;5:1451-1457. [19] Hungund S, Thakkar R. Effect of pretreatment with ketorolac tromethamine on operative pain during periodontal surgery: A case-control study. J Indian Soc Periodontol. 2011;15(1):55-58.[20] Wilkinson-Berka JL. Vasoactive factors and diabetic retinopathy: vascular endothelial growth factor, cycoloxygenase-2 and nitric oxide. Curr Pharm Des. 2004;10(27):3331-3348.[21] Kim SJ, Toma HS, Barnett JM, et al. Ketorolac inhibits choroidal neovascularization by suppression of retinal VEGF. Exp Eye Res. 2010;91(4):537-543. [22] Rooks WH 2nd. The pharmacologic activity of ketorolac tromethamine. Pharmacotherapy. 1990;10(6 (Pt 2): 30S-32S.[23] Gaynes BI, Fiscella R. Topical nonsteroidal anti-inflammatory drugs for ophthalmic use: a safety review. Drug Saf. 2002;25(4):233-250.[24] Paliwal SK, Chauhan R, Sharma V, et al. Entrapment of ketorolac tromethamine in polymeric vehicle for controlled drug delivery. Indian J Pharm Sci. 2009;71(6): 687-691.[25] Kompella UB, Kadam RS, Lee VH. Recent advances in ophthalmic drug delivery. Ther Deliv. 2010;1(3):435-456.[26] Emi K, Pederson JE, Toris CB. Hydrostatic pressure of the suprachoroidal space. Invest Ophthalmol Vis Sci. 1989; 30(2):233-238.[27] Poole TA, Sudarsky RD. Suprachoroidal implantation for the treatment of retinal detachment. Ophthalmology. 1986;93(11):1408-1412.[28] Witkin AJ, Fineman M, Ho AC, et al. A novel method of draining intraoperative choroidal detachments during 23-gauge pars plana vitrectomy. Arch Ophthalmol. 2012; 130(8):1048-1050.[29] Patel SR, Berezovsky DE, McCarey BE, et al. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. Invest Ophthalmol Vis Sci. 2012;53(8): 4433-4441.[30] Tetz M, Rizzo S, Augustin AJ. Safety of submacular suprachoroidal drug administration via a microcatheter: retrospective analysis of European treatment results. Ophthalmologica. 2012;227(4):183-189. [31] Jackson TL, Hussain A, Salisbury J, et al. Transscleral albumin diffusion and suprachoroidal albumin concentration in uveal effusion syndrome. Retina. 2012; 32(1):177-182.[32] Rizzo S, Ebert FG, Bartolo ED, et al. Suprachoroidal drug infusion for the treatment of severe subfoveal hard exudates. Retina. 2012;32(4):776-784.[33] Margalit E, Kugler LJ, Brumm MV, et al. The safety of intraocular ketorolac in rabbits. Invest Ophthalmol Vis Sci. 2006;47(5):2093-2099.[34] Maldonado RM, Vianna RN, Cardoso GP, et al. Intravitreal injection of commercially available ketorolac tromethamine in eyes with diabetic macular edema refractory to laser photocoagulation. Curr Eye Res. 2011; 36(8):768-773.[35] Giannantonio C, Papacci P, Purcaro V, et al. Effectiveness of ketorolac tromethamine in prevention of severe retinopathy of prematurity. J Pediatr Ophthalmol Strabismus. 2011;48(4):247-251.[36] Margalit E, Boysen JL, Zastrocky JP, et al. Use of intraocular ketorolac tromethamine for the treatment of chronic cystoid macular edema. Can J Ophthalmol. 2010; 45(4):409-410.[37] Kim SJ, Toma HS. Inhibition of choroidal neovascularization by intravitreal ketorolac. Arch Ophthalmol. 2010;128(5):596-600.[38] Komarowska I, Heilweil G, Rosenfeld PJ, et al. Retinal toxicity of commercially available intravitreal ketorolac in albino rabbits. Retina. 2009;29(1):98-105.[39] Kim SJ, Adams NA, Toma HS, et al. Safety of intravitreal ketorolac and diclofenac: an electroretinographic and histopathologic study. Retina. 2008;28(4):595-605.[40] Olsen TW, Feng X, Wabner K, et al. Cannulation of the suprachoroidal space: a novel drug delivery methodology to the posterior segment. Am J Ophthalmol. 2006;142(5): 777-787. [41] Wang M, Liu W, Lu Q, et al. Pharmacokinetic comparison of ketorolac after intracameral, intravitreal, and suprachoroidal administration in rabbits. Neurosurgery. in press.[42] The Ministry of Science and Technology of the People’s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30.[43] Marmor MF, Fulton AB, Holder GE, et al. ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol. 2009;118(1):69-77. |
[1] | Yu Li, Ping-Ping Shen, Bin Wang. Induced pluripotent stem cell technology for spinal cord injury: a promising alternative therapy [J]. Neural Regeneration Research, 2021, 16(8): 1500-1509. |
[2] | Sara Saffari, Tiam M. Saffari, Dietmar J. O. Ulrich, Steven E. R. Hovius, Alexander Y. Shin. The interaction of stem cells and vascularity in peripheral nerve regeneration [J]. Neural Regeneration Research, 2021, 16(8): 1510-1517. |
[3] | Ci Li, Song-Yang Liu, Wei Pi, Pei-Xun Zhang. Cortical plasticity and nerve regeneration after peripheral nerve injury [J]. Neural Regeneration Research, 2021, 16(8): 1518-1523. |
[4] | Stefan Kassumeh, Gregor R. Weber, Matthias Nobl, Siegfried G. Priglinger, Andreas Ohlmann. The neuroprotective role of Wnt signaling in the retina [J]. Neural Regeneration Research, 2021, 16(8): 1524-1528. |
[5] | Shi-Qin Lv, Wutian Wu. ISP and PAP4 peptides promote motor functional recovery after peripheral nerve injury [J]. Neural Regeneration Research, 2021, 16(8): 1598-1605. |
[6] | Guo-Yu Wang, Zhi-Jian Cheng, Pu-Wei Yuan, Hao-Peng Li, Xi-Jing He. Olfactory ensheathing cell transplantation alters the expression of chondroitin sulfate proteoglycans and promotes axonal regeneration after spinal cord injury [J]. Neural Regeneration Research, 2021, 16(8): 1638-1644. |
[7] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[8] | Ayaka Sugeno, Wenhui Piao, Miki Yamazaki, Kiyofumi Takahashi, Koji Arikawa, Hiroko Matsunaga, Masahito Hosokawa, Daisuke Tominaga, Yoshio Goshima, Haruko Takeyama, Toshio Ohshima. Cortical transcriptome analysis after spinal cord injury reveals the regenerative mechanism of central nervous system in CRMP2 knock-in mice [J]. Neural Regeneration Research, 2021, 16(7): 1258-1265. |
[9] | Rui-Lin Zhu, Yuan Fang, Hong-Hua Yu, Dong F. Chen, Liu Yang, Kin-Sang Cho. Absence of ephrin-A2/A3 increases retinal regenerative potential for Müller cells in Rhodopsin knockout mice [J]. Neural Regeneration Research, 2021, 16(7): 1317-1322. |
[10] | Rong Li, Zu-Cheng Huang, Hong-Yan Cui, Zhi-Ping Huang, Jun-Hao Liu, Qing-An Zhu, Yong Hu. Utility of somatosensory and motor-evoked potentials in reflecting gross and fine motor functions after unilateral cervical spinal cord contusion injury [J]. Neural Regeneration Research, 2021, 16(7): 1323-1330. |
[11] | Zhong-Yue Lv, Ying Li, Jing Liu. Progress in clinical trials of stem cell therapy for cerebral palsy [J]. Neural Regeneration Research, 2021, 16(7): 1377-1382. |
[12] | Zi-Qi Shao, Shan-Shan Dou, Jun-Ge Zhu, Hui-Qing Wang, Chun-Mei Wang, Bao-Hua Cheng, Bo Bai. Apelin-13 inhibits apoptosis and excessive autophagy in cerebral ischemia/reperfusion injury [J]. Neural Regeneration Research, 2021, 16(6): 1044-1051. |
[13] | Qiu-Shi Gao, Ya-Han Zhang, Hang Xue, Zi-Yi Wu, Chang Li, Ping Zhao . Brief inhalation of sevoflurane can reduce glial scar formation after hypoxic-ischemic brain injury in neonatal rats [J]. Neural Regeneration Research, 2021, 16(6): 1052-1061. |
[14] | Jian Zhang, Ren-Jie Wang, Miao Chen, Xiao-Yin Liu, Ke Ma, Hui-You Xu, Wu-Sheng Deng, Yi-Chao Ye, Wei-Xin Li, Xu-Yi Chen, Hong-Tao Sun. Collagen/heparan sulfate porous scaffolds loaded with neural stem cells improve neurological function in a rat model of traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(6): 1068-1077. |
[15] | Yu-Xuan Wu, Hao Ma, Jian-Lan Wang, Wei Qu. Production of chitosan scaffolds by lyophilization or electrospinning: which is better for peripheral nerve regeneration? [J]. Neural Regeneration Research, 2021, 16(6): 1093-1098. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||