Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (5): 420-426.doi: 10.3969/j.issn.1673-5374.2013.05.005
Previous Articles Next Articles
Zhu Tian1, Jia Fan2, Yang Zhao1, Sheng Bi1, Lihui Si3, Qun Liu1
Received:
2012-07-21
Revised:
2012-10-10
Online:
2013-02-15
Published:
2013-02-15
Contact:
Qun Liu, Ph.D., Doctoral supervisor, Professor, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China, songleisl@163.com
About author:
Zhu Tian☆, M.D.
Zhu Tian, Jia Fan, Yang Zhao, Sheng Bi, Lihui Si, Qun Liu. Estrogen receptor beta treats Alzheimer’s disease[J]. Neural Regeneration Research, 2013, 8(5): 420-426.
[1] Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol. 2011;7(3):137-152. [2] Bafakih FF, Daous YM, Gyure KA. Pathologic diagnosis of Alzheimer disease. W V Med J. 2011;107(3):30-33.[3] Liang K, Yang L, Yin C, et al. Estrogen stimulates degradation of beta-amyloid peptide by up-regulating neprilysin. J Biol Chem. 2010;285(2):935-942. [4] Szego EM, Csorba A, Janáky T, et al. Effects of estrogen on beta-amyloid-induced cholinergic cell death in the nucleus basalis magnocellularis. Neuroendocrinology. 2011;93(2):90-105. [5] Bang Y, Lim J, Kim SS, et al. Aroclor1254 interferes with estrogen receptor-mediated neuroprotection against beta-amyloid toxicity in cholinergic SN56 cells. Neurochem Int. 2011;59(5):582-590. [6] Si ML, Long C, Chen MF, et al. Estrogen prevents β-amyloid inhibition of sympathetic α7-nAChR-mediated nitrergic neurogenic dilation in porcine basilar arteries. Acta Physiol (Oxf). 2011;203(1):13-23. [7] Bozzo C, Graziola F, Chiocchetti A, et al. Estrogen and beta-amyloid toxicity:role of integrin and PI3-K. Mol Cell Neurosci. 2010;45(2):85-91. [8] Germain D. Estrogen carcinogenesis in breast cancer. Endocrinol Metab Clin North Am. 2011;40(3):473-484.[9] Stingl J. Estrogen and progesterone in normal mammary gland development and in cancer. Horm Cancer. 2011; 2(2):85-90.[10] Barone I, Brusco L, Fuqua SA. Estrogen receptor mutations and changes in downstream gene expression and signaling. Clin Cancer Res. 2010;16(10):2702-2708. [11] Younes M, Honma N. Estrogen receptor β. Arch Pathol Lab Med. 2011;135(1):63-66. [12] Leong H, Riby JE, Firestone GL, et al. Potent ligand-independent estrogen receptor activation by 3,3'-diindolylmethane is mediated by cross talk between the protein kinase A and mitogen-activated protein kinase signaling pathways. Mol Endocrinol. 2004;18(2):291-302. [13] Zhang G, Yanamala N, Lathrop KL, et al. Ligand- independent antiapoptotic function of estrogen receptor-beta in lung cancer cells. Mol Endocrinol. 2010; 24(9):1737-1747.[14] Si LH, Xu TM, Wang FZ, et al. X-box-binding protein 1-modified neural stem cells for treatment of Parkinson’s disease. Neural Regen Res. 2012;7(10):736-740.[15] Valori CF, Ning K, Wyles M, et al. Development and Applications of Non-HIV-Based Lentiviral Vectors in Neurological Disorders. Curr Gene Ther. 2008;8:406-418. [16] Dodart JC, Marr RA, Koistinaho M, et al. Gene delivery of human apolipoprotein E alters brain Abeta burden in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A. 2005;102(4):1211-1216.[17] Peng KA, Masliah E. Lentivirus-expressed siRNA vectors against Alzheimer disease. Methods Mol Biol. 2010;614: 215-224. [18] Piedrahita D, Hernández I, López-Tobón A, et al. Silencing of CDK5 reduces neurofibrillary tangles in transgenic alzheimer's mice. J Neurosci. 2010;30(42):13966-13976. [19] Dropuli? B. Lentiviral vectors: their molecular design, safety, and use in laboratory and preclinical research. Hum Gene Ther. 2011;22(6):649-657. [20] Staunstrup NH, Mikkelsen JG. Integrase-defective lentiviral vectors--a stage for nonviral integration machineries. Curr Gene Ther. 2011;11(5):350-362. [21] Dreyer JL. Lentiviral vector mediated gene transfer and RNA silencing technology in neuronal dysfunctions. Methods Mol Biol. 2010;614:3-35. [22] Geraerts M, Eggermont K, Hernandez-Acosta P, et al. Lentiviral vectors mediate efficient and stable gene transfer in adult neural stem cells in vivo. Hum Gene Ther. 2006;17(6):635-650.[23] Abordo-Adesida E, Follenzi A, Barcia C, et al. Stability of lentiviral vector-mediated transgene expression in the brain in the presence of systemic antivector immune responses. Hum Gene Ther. 2005;16(6):741-751.[24] Wong LF, Goodhead L, Prat C, et al. Lentivirus-mediated gene transfer to the central nervous system:therapeutic and research applications. Hum Gene Ther. 2006;17(1): 1-9. [25] Loomes KM. Survival of an islet β-cell in type-2 diabetes:curbing the effects of amyloid cytotoxicity. Islets. 2011;3(1):38-39.[26] Giunta B, Ehrhart J, Obregon DF, et al. Antiretroviral medications disrupt microglial phagocytosis of β-amyloid and increase its production by neurons:implications for HIV-associated neurocognitive disorders. Mol Brain. 2011; 4(1):23. [27] Fodero-Tavoletti MT, Villemagne VL, Rowe CC, et al. Amyloid-β:the seeds of darkness. Int J Biochem Cell Biol. 2011;43(9):1247-1251.[28] Mohamed A, Cortez L, de Chaves EP. Aggregation state and neurotoxic properties of alzheimer β-amyloid peptide. Curr Protein Pept Sci. 2011;12(3):235-257. [29] Hyman BT. Amyloid-dependent and amyloid-independent stages of Alzheimer disease. Arch Neurol. 2011;68(8): 1062-1064.[30] Stewart S, Cacucci F, Lever C. Which memory task for my mouse? A systematic review of spatial memory performance in the Tg2576 Alzheimer's mouse model. J Alzheimers Dis. 2011;26(1):105-126. [31] Rowe DD, Leonardo CC, Recio JA, et al. Human Umbilical Cord Blood Cells Protect Oligodendrocytes from Brain Ischemia through Akt Signal Transduction. J Biol Chem. 2012;287(6):4177-4187. [32] Hers I, Vincent EE, Tavaré JM. Akt signalling in health and disease. Cell Signal. 2011;23(10):1515-1527.[33] Tsuji F, Oh-Hashi K, Kiuchi K. Differential effects of Akt pathway inhibitors on IL-1β-induced protein phosphorylation in human fibroblast-like synoviocytes. J Recept Signal Transduct Res. 2012;32(1):22-28.[34] Lou H, Fan P, Perez RG, et al. Neuroprotective effects of linarin through activation of the PI3K/Akt pathway in amyloid-β-induced neuronal cell death. Bioorg Med Chem. 2011;19(13):4021-4027. [35] Yin G, Li LY, Qu M, et al. Upregulation of AKT attenuates amyloid-β-induced cell apoptosis. J Alzheimers Dis. 2011; 25(2):337-345.[36] The Ministry of Science and Technology of the People’s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30.[37] Nabeshima T, Nitta A. Memory impairment and neuronal dysfunction induced by beta-amyloid protein in rats. Tohoku J Exp Med. 1994;174(3):241-249. [38] Liu L, Orozco IJ, Planel E, et al. A transgenic rat that develops Alzheimer's disease-like amyloid pathology, deficits in synaptic plasticity and cognitive impairment. Neurobiol Dis. 2008;31(1):46-57. [39] Finch CE, Marchalonis JJ. Evolutionary perspectives on amyloid and inflammatory features of Alzheimer disease. Neurobiol Aging. 1996;17(5):809-815. |
[1] | Mansour Alwjwaj, Rais Reskiawan A. Kadir, Ulvi Bayraktutan. The secretome of endothelial progenitor cells: a potential therapeutic strategy for ischemic stroke [J]. Neural Regeneration Research, 2021, 16(8): 1483-1489. |
[2] | Yu-Song Yuan, Fei Yu, Ya-Jun Zhang, Su-Ping Niu, Hai-Lin Xu, Yu-Hui Kou. Changes in proteins related to early nerve repair in a rat model of sciatic nerve injury [J]. Neural Regeneration Research, 2021, 16(8): 1622-1627. |
[3] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[4] | Shinichi Kinoshita, Ryuta Koyama. Pro- and anti-epileptic roles of microglia [J]. Neural Regeneration Research, 2021, 16(7): 1369-1371. |
[5] | Dae Young Yoo, Hyo Young Jung, Woosuk Kim, Kyu Ri Hahn, Hyun Jung Kwon, Sung Min Nam, Jin Young Chung, Yeo Sung Yoon, Dae Won Kim, In Koo Hwang. Entacapone promotes hippocampal neurogenesis in mice [J]. Neural Regeneration Research, 2021, 16(6): 1005-1010. |
[6] | Hui-Ling Wang, Fei-Lai Liu, Rui-Qing Li, Ming-Yue Wan, Jie-Ying Li, Jing Shi, Ming-Li Wu, Jun-Hua Chen, Wei-Juan Sun, Hong-Xia Feng, Wei Zhao, Jin Huang, Ren-Chao Liu, Wen-Xue Hao, Xiao-Dong Feng. Electroacupuncture improves learning and memory functions in a rat cerebral ischemia/reperfusion injury model through PI3K/Akt signaling pathway activation [J]. Neural Regeneration Research, 2021, 16(6): 1011-1016. |
[7] | Yu-Xuan Wu, Hao Ma, Jian-Lan Wang, Wei Qu. Production of chitosan scaffolds by lyophilization or electrospinning: which is better for peripheral nerve regeneration? [J]. Neural Regeneration Research, 2021, 16(6): 1093-1098. |
[8] | Raheel Khan, Don Kulasiri, Sandhya Samarasinghe. Functional repertoire of protein kinases and phosphatases in synaptic plasticity and associated neurological disorders [J]. Neural Regeneration Research, 2021, 16(6): 1150-1157. |
[9] | Viviane Rostirola Elsner, Lucieli Trevizol, Isadora de Leon, Marcos da Silva, Thayná Weiss, Milena Braga, Daniela Pochmann, Amanda Stolzenberg Blembeel, Caroline Dani, Elenice Boggio. Therapeutic effectiveness of a single exercise session combined with WalkAide functional electrical stimulation in post-stroke patients: a crossover design study [J]. Neural Regeneration Research, 2021, 16(5): 805-812. |
[10] | Su-Ping Niu, Ya-Jun Zhang, Na Han, Xiao-Feng Yin, Dian-Ying Zhang, Yu-Hui Kou . Identification of four differentially expressed genes associated with acute and chronic spinal cord injury based on bioinformatics data [J]. Neural Regeneration Research, 2021, 16(5): 865-870. |
[11] | Ming-Yu Shi, Cheng-Cheng Ma, Fang-Fang Chen, Xiao-Yu Zhou, Xue Li, Chuan-Xi Tang, Lin Zhang, Dian-Shuai Gao. Possible role of glial cell line-derived neurotrophic factor for predicting cognitive impairment in Parkinson’s disease: a case-control study [J]. Neural Regeneration Research, 2021, 16(5): 885-892. |
[12] | Mariam Rizk, Justin Vu, Zhi Zhang. Impact of pediatric traumatic brain injury on hippocampal neurogenesis [J]. Neural Regeneration Research, 2021, 16(5): 926-933. |
[13] | Bing-Qian Cao, Feng Tan, Jie Zhan, Peng-Hui Lai. Mechanism underlying treatment of ischemic stroke using acupuncture: transmission and regulation [J]. Neural Regeneration Research, 2021, 16(5): 944-954. |
[14] | Magdalini Tsintou, Kyriakos Dalamagkas, Tara L. Moore, Yogesh Rathi, Marek Kubicki, Douglas L. Rosene, Nikos Makris. The use of hydrogel-delivered extracellular vesicles in recovery of motor function in stroke: a testable experimental hypothesis for clinical translation including behavioral and neuroimaging assessment approaches [J]. Neural Regeneration Research, 2021, 16(4): 605-613. |
[15] | Zhi-Hai Ju, Xuan Liang, Yao-Yao Ren, Luo-Wa Shu, Yan-Hong Yan, Xu Cui. Neurons derived from human-induced pluripotent stem cells express mu and kappa opioid receptors [J]. Neural Regeneration Research, 2021, 16(4): 653-658. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||