Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (5): 427-434.doi: 10.3969/j.issn.1673-5374.2013.05.006
Previous Articles Next Articles
Wenyu Fu1, Cui Lv2, Wenxin Zhuang1, Dandan Chen1, E Lv1, Fengjie Li1, Xiaocui Wang1
Received:
2012-09-12
Revised:
2013-01-30
Online:
2013-02-15
Published:
2013-02-15
Contact:
Wenyu Fu, Department of Histology and Embryology, Weifang Medical University, Weifang 261053, Shandong Province, China, wenyufu@hotmail.com
About author:
Wenyu Fu☆, M.D., Professor.
Supported by:
This study was supported by the Scientific Research Foundation for the Returned Overseas, No. [2009]1001; the Natural Science Foundation of Shandong Province, No. Y2008C129.
Wenyu Fu, Cui Lv, Wenxin Zhuang, Dandan Chen, E Lv, Fengjie Li, Xiaocui Wang. An effective inducer of dopaminergic neuron-like differentiation[J]. Neural Regeneration Research, 2013, 8(5): 427-434.
[1] Cho EG, Zaremba JD, McKercher SR, et al. MEF2C enhances dopaminergic neuron differentiation of human embryonic stem cells in a parkinsonian rat model. PLoS One. 2011;6(8):e24027. [2] Xu J, Wang W, Ludeman M, et al. Chondrogenic differentiation of human mesenchymal stem cells in three- dimensional alginate gels. Tissue Eng Part A. 2008;14(5):667-680.[3] Scheideler M, Elabd C, Zaragosi LE, et al. Comparative transcriptomics of human multipotent stem cells during adipogenesis and osteoblastogenesis. BMC Genomics. 2008;9:340.[4] Zhang Y, Khan D, Delling J, et al. Mechanisms underlying the osteo- and adipo-differentiation of human mesenchymal stem cells. ScientificWorldJournal. 2012;2012:793823. [5] Alexanian AR. Epigenetic modifiers promote efficient generation of neural-like cells from bone marrow-derived mesenchymal cells grown in neural environment. J Cell Biochem. 2007;100(2):362-371.[6] Liu J, Song L, Jiang C, et al. Electrophysiological properties and synaptic function of mesenchymal stem cells during neurogenic differentiation: a mini-review. Int J Artif Organs. 2012;35(5):323-337. [7] Krampera M, Pasini A, Pizzolo G, et al. Regenerative and immunomodulatory potential of mesenchymal stem cells. Curr Opin Pharmacol. 2006;6(4):435-441. [8] Rodríguez R, García-Castro J, Trigueros C, et al. Multipotent mesenchymal stromal cells: clinical applications and cancer modeling. Adv Exp Med Biol. 2012;741:187-205.[9] Trzaska KA, Kuzhikandathil EV, Rameshwar P. Specification of a dopaminergic phenotype from adult human mesenchymal stem cells. Stem Cells. 2007;25(11):2797-2808. [10] Tio M, Tan KH, Lee W, et al. Roles of db-cAMP, IBMX and RA in aspects of neural differentiation of cord blood derived mesenchymal-like stem cells. PLoS One. 2010;5(2):e9398.[11] Trzaska KA, Rameshwar P. Dopaminergic neuronal differentiation protocol for human mesenchymal stem cells. Methods Mol Biol. 2011;698:295-303.[12] Park S, Kim E, Koh SE, et al. Dopaminergic differentiation of neural progenitors derived from placental mesenchymal stem cells in the brains of Parkinson's disease model rats and alleviation of asymmetric rotational behavior. Brain Res. 2012;1466:158-166. [13] Tondreau T, Lagneaux L, Dejeneffe M, et al. Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation. 2004;72(7):319-326.[14] Nadri S, Soleimani M, Mobarra Z, et al. Expression of dopamine-associated genes on conjunctiva stromal- derived human mesenchymal stem cells. Biochem Biophys Res Commun. 2008;377(2):423-428.[15] Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. 2000;28(8):875-884.[16] Hussain I, Magd SA, Eremin O, et al. New approach to isolate mesenchymal stem cell (MSC) from human umbilical cord blood. Cell Biol Int. 2012;36(7):595-600. [17] Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000;164(2):247-256.[18] Mammadov B, Karakas N, Isik S. Comparison of long-term retinoic acid-based neural induction methods of bone marrow human mesenchymal stem cells. In Vitro Cell Dev Biol Anim. 2011;47(7):484-491.[19] Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000;61(4):364-370.[20] Sun D, Bullock MR, McGinn MJ, et al. Basic fibroblast growth factor-enhanced neurogenesis contributes to cognitive recovery in rats following traumatic brain injury. Exp Neurol. 2009;216(1):56-65. [21] Timmer M, Cesnulevicius K, Winkler C, et al. Fibroblast growth factor (FGF)-2 and FGF receptor 3 are required for the development of the substantia nigra, and FGF-2 plays a crucial role for the rescue of dopaminergic neurons after 6-hydroxydopamine lesion. J Neurosci. 2007;27(3):459-471.[22] Zhang HA, Gao M, Zhang L, et al. Salvianolic acid A protects human SH-SY5Y neuroblastoma cells against H2O2-induced injury by increasing stress tolerance ability. Biochem Biophys Res Commun. 2012;421(3):479-483. [23] Liu CS, Chen NH, Zhang JT. Protection of PC12 cells from hydrogen peroxide-induced cytotoxicity by salvianolic acid B, a new compound isolated from Radix Salviae miltiorrhizae. Phytomedicine. 2007;14(7-8):492-497. [24] Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci. 2007;8(10):755-765.[25] Dinsmore J, Ratliff J, Jacoby D, et al. Embryonic stem cells as a model for studying regulation of cellular differentiation. Theriogenology. 1998;49(1):145-151.[26] Lin LF, Doherty DH, Lile JD, et al. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993;260(5111):1130-1132.[27] Glavaski-Joksimovic A, Virag T, Mangatu TA, et al. Glial cell line-derived neurotrophic factor-secreting genetically modified human bone marrow-derived mesenchymal stem cells promote recovery in a rat model of Parkinson's disease. J Neurosci Res. 2010;88(12):2669-2681.[28] Kim DW. Efficient induction of dopaminergic neurons from embryonic stem cells for application to Parkinson's disease. Yonsei Med J. 2004;45 Suppl:23-27.[29] Kim JH, Auerbach JM, Rodríguez-Gómez JA, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature. 2002;418(6893):50-56. [30] Guo G, Li B, Wang Y, et al. Effects of salvianolic acid B on proliferation, neurite outgrowth and differentiation of neural stem cells derived from the cerebral cortex of embryonic mice. Sci China Life Sci. 2010;53(6):653-662. [31] Hu L, Yu J, Li F, et al. Effects of Salvia miltorrhiza in neural differentiation of rat mesenchymal stem cells with optimized protocol. J Ethnopharmacol. 2011;136(2):334-340. [32] Ye W, Shimamura K, Rubenstein JL, et al. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell. 1998;93(5):755-766.[33] Paek H, Gutin G, Hébert JM. FGF signaling is strictly required to maintain early telencephalic precursor cell survival. Development. 2009;136(14):2457-2465. [34] Peterson G, Kumar A, Gart E, Narayanan S. Catecholamines increase conjugative gene transfer between enteric bacteria. Microb Pathog. 2011;51(1-2):1-8.[35] Tsunoda M, Funatsu T. Catecholamine analysis with strong cation exchange column liquid chromatography- peroxyoxalate chemiluminescence reaction detection. Anal Bioanal Chem. 2012;402(3):1393-1397. [36] The Ministry of Science and Technology of the People’s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30.[37] Kuznetsov SA, Friedenstein AJ, Robey PG. Factors required for bone marrow stromal fibroblast colony formation in vitro. Br J Haematol. 1997;97(3):561-570. |
[1] | Yu Li, Ping-Ping Shen, Bin Wang. Induced pluripotent stem cell technology for spinal cord injury: a promising alternative therapy [J]. Neural Regeneration Research, 2021, 16(8): 1500-1509. |
[2] | Sara Saffari, Tiam M. Saffari, Dietmar J. O. Ulrich, Steven E. R. Hovius, Alexander Y. Shin. The interaction of stem cells and vascularity in peripheral nerve regeneration [J]. Neural Regeneration Research, 2021, 16(8): 1510-1517. |
[3] | Xue-Mei Zhang, Yang Sun, Ying-Lian Zhou, Zhuo-Min Jiao, Dan Yang, Yuan-Jiao Ouyang, Mei-Yu Yu, Jin-Yue Li, Wei Li, Duo Wang, Hui Yue, Jin Fu. Therapeutic effects of dental pulp stem cells on vascular dementia in rat models [J]. Neural Regeneration Research, 2021, 16(8): 1645-1651. |
[4] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[5] | Min Wang, Juan-Juan Tang, Lin-Xiao Wang, Jun Yu, Li Zhang, Chen Qiao. Hydrogen sulfide enhances adult neurogenesis in a mouse model of Parkinson’s disease [J]. Neural Regeneration Research, 2021, 16(7): 1353-1358. |
[6] | Jian Zhang, Ren-Jie Wang, Miao Chen, Xiao-Yin Liu, Ke Ma, Hui-You Xu, Wu-Sheng Deng, Yi-Chao Ye, Wei-Xin Li, Xu-Yi Chen, Hong-Tao Sun. Collagen/heparan sulfate porous scaffolds loaded with neural stem cells improve neurological function in a rat model of traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(6): 1068-1077. |
[7] | Yuan Liu, Richard K. Lee. Cell transplantation to replace retinal ganglion cells faces challenges – the Switchboard Dilemma [J]. Neural Regeneration Research, 2021, 16(6): 1138-1141. |
[8] | Natalia E. Krzesniak, Anna Sarnowska, Anna Figiel-Dabrowska, Katarzyna Osiak, Krystyna Domanska-Janik, Bartłomiej H. Noszczyk. Secondary release of the peripheral nerve with autologous fat derivates benefits for functional and sensory recovery [J]. Neural Regeneration Research, 2021, 16(5): 856-864. |
[9] | Xue-Mei Zhang, Yuan-Jiao Ouyang, Bing-Qian Yu, Wei Li, Mei-Yu Yu, Jin-Yue Li, Zhuo-Min Jiao, Dan Yang, Na Li, Ying Shi, Yun-Yun Xu, Zhi-Jun He, Duo Wang, Hui Yue, Jin Fu. Therapeutic potential of dental pulp stem cell transplantation in a rat model of Alzheimer’s disease [J]. Neural Regeneration Research, 2021, 16(5): 893-898. |
[10] | Mariam Rizk, Justin Vu, Zhi Zhang. Impact of pediatric traumatic brain injury on hippocampal neurogenesis [J]. Neural Regeneration Research, 2021, 16(5): 926-933. |
[11] | Magdalini Tsintou, Kyriakos Dalamagkas, Tara L. Moore, Yogesh Rathi, Marek Kubicki, Douglas L. Rosene, Nikos Makris. The use of hydrogel-delivered extracellular vesicles in recovery of motor function in stroke: a testable experimental hypothesis for clinical translation including behavioral and neuroimaging assessment approaches [J]. Neural Regeneration Research, 2021, 16(4): 605-613. |
[12] | Lindsey H. Forbes, Melissa R. Andrews. Advances in human stem cell therapies: pre-clinical studies and the outlook for central nervous system regeneration [J]. Neural Regeneration Research, 2021, 16(4): 614-617. |
[13] | Zhi-Hai Ju, Xuan Liang, Yao-Yao Ren, Luo-Wa Shu, Yan-Hong Yan, Xu Cui. Neurons derived from human-induced pluripotent stem cells express mu and kappa opioid receptors [J]. Neural Regeneration Research, 2021, 16(4): 653-658. |
[14] | Chao Han, Ya-Jun Wang, Ya-Chen Wang, Xin Guan, Liang Wang, Li-Ming Shen, Wei Zou, Jing Liu. Caveolin-1 downregulation promotes the dopaminergic neuron-like differentiation of human adipose-derived mesenchymal stem cells [J]. Neural Regeneration Research, 2021, 16(4): 714-720. |
[15] | Xu-Chang Hu, Yu-Bao Lu, Yong-Na Yang, Xue-Wen Kang, Yong-Gang Wang, Bing Ma, Shuai Xing. Progress in clinical trials of cell transplantation for the treatment of spinal cord injury: how many questions remain unanswered? [J]. Neural Regeneration Research, 2021, 16(3): 405-413. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||