Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (6): 506-513.doi: 10.3969/j.issn.1673-5374.2013.06.003
Previous Articles Next Articles
Chengjun Song, Zhenjun Yang, Meirong Zhong, Zhihong Chen
Received:
2012-09-10
Revised:
2013-01-26
Online:
2013-02-25
Published:
2013-02-25
Contact:
Zhihong Chen, M.D., Professor, Master’s supervisor, Department of Human Anatomy, Chengde Medical University, Chengde 067000, Hebei Province, China, czh1971@126.com.
About author:
Chengjun Song★, Master, Associate professor.
Chengjun Song, Zhenjun Yang, Meirong Zhong, Zhihong Chen. Sericin protects against diabetes-induced injuries in sciatic nerve and related nerve cells[J]. Neural Regeneration Research, 2013, 8(6): 506-513.
[1] Harati Y. Diabetic peripheral neuropathies. Methodist Debakey Cardiovasc J. 2010;6(2):15-19.[2] Gebel E. New hope for ending complications. Working together to protect your body from diabetes damage. Diabetes Forecast. 2012;65(4):56, 59-60.[3] Shiyovich A, Sztarkier I, Nesher L. Toxic hepatitis induced by Gymnema sylvestre, a natural remedy for type 2 diabetes mellitus. Am J Med Sci. 2010;340(6):514-517.[4] Russell-Jones D. The safety and tolerability of GLP-1 receptor agonists in the treatment of type-2 diabetes. Int J Clin Pract. 2010;64(10):1402-1414.[5] Kaewkorn W, Limpeanchob N, Tiyaboonchai W, et al. Effects of silk sericin on the proliferation and apoptosis of colon cancer cells. Biol Res. 2012;45(1):45-50.[6] Nayak S, Talukdar S, Kundu SC. Potential of 2D crosslinked sericin membranes with improved biostability for skin tissue engineering. Cell Tissue Res. 2012;347(3):783-794. [7] Zhaorigetu S, Yanaka N, Sasaki M, et al. Inhibitory effects of silk protein, sericin on UVB-induced acute damage and tumor promotion by reducing oxidative stress in the skin of hairless mouse. J Photochem Photobiol B. 2003;71(1-3): 11-17. [8] Fu XM, Zhong MR, Fu WL, et al. Effects of sericine on blood glucose and blood lipid in type 2 diabetes rats. Zhongguo Laonian Xue Zazhi. 2011;31(1):103-105.[9] Fu XM, Ma HW, Fu WL, et al. Protective effects of sericin on pancreatic islet cells of type II diabetic rat. Jiepou Xue Zazhi. 2010;33(2):161-164. [10] Liu XY, Fu XM, Gao Y, et al. Protective effects of sericin on islet cells apoptosis of type 2 diabetes rats. Zhongguo Laonian Xue Zazhi. 2012;32(12):2525-2527.[11] Fu WL, He YQ, Ma HW, et al. Effects of sericine on proliferation and related factors of germ cells in testis of type 2 diabetic rats. Zhongguo Yike Daxue Xuebao. 2010; 39(5):332-335.[12] Fu WL, Fu XM, Zhong MR, et al. Effects of sericine on growth hormone/insulin-like growth factor-1 axis of testis in type 2 diabetes mellitus rats. Jiepou Xuebao. 2011; 42(1):104-109. [13] Fu WL, Zhong MR, He YQ, et al. Effects of sericine pretreatment on IGF-1 expression in testes of diabetes mellitus rat model. Zhongguo Zuzhi Huaxue yu Xibao Huaxue Zazhi. 2010;19(4):361-364.[14] Diolaiti D, Bernardoni R, Trazzi S, et al. Functional cooperation between TrkA and p75(NTR) accelerates neuronal differentiation by increased transcription of GAP-43 and p21(CIP/WAF) genes via ERK1/2 and AP-1 activities. Exp Cell Res. 2007;313(14):2980-2992. [15] Renton JP, Xu N, Clark JJ, et al. Interaction of neurotrophin signaling with Bcl-2 localized to the mitochondria and endoplasmic reticulum on spiral ganglion neuron survival and neurite growth. J Neurosci Res. 2010;88(10):2239-2251. [16] Nässel DR, Wegener C. A comparative review of short and long neuropeptide F signaling in invertebrates: Any similarities to vertebrate neuropeptide Y signaling? Peptides. 2011;32(6):1335-1355. [17] Nguyen AD, Herzog H, Sainsbury A. Neuropeptide Y and peptide YY: important regulators of energy metabolism. Curr Opin Endocrinol Diabetes Obes. 2011;18(1):56-60.[18] Ackerley S, James PA, Kalli A, et al. A mutation in the small heat-shock protein HSPB1 leading to distal hereditary motor neuronopathy disrupts neurofilament assembly and the axonal transport of specific cellular cargoes. Hum Mol Genet. 2006;15(2):347-354. [19] Xu G, Pierson CR, Murakawa Y, et al. Altered tubulin and neurofilament expression and impaired axonal growth in diabetic nerve regeneration. J Neuropathol Exp Neurol. 2002;61(2):164-175.[20] von Wilmowsky C, Stockmann P, Harsch I, et al. Diabetes mellitus negatively affects peri-implant bone formation in the diabetic domestic pig. J Clin Periodontol. 2011;38(8): 771-779. [21] Pierson CR, Zhang W, Sima AA. Proinsulin C-peptide replacement in type 1 diabetic BB/Wor-rats prevents deficits in nerve fiber regeneration. J Neuropathol Exp Neurol. 2003;62(7):765-779.[22] Scott JN, Clark AW, Zochodne DW. Neurofilament and tubulin gene expression in progressive experimental diabetes: failure of synthesis and export by sensory neurons. Brain. 1999;122 ( Pt 11):2109-2118.[23] Li Y, Jung P, Brown A. Axonal transport of neurofilaments: a single population of intermittently moving polymers. J Neurosci. 2012;32(2):746-758.[24] Shea TB, Lee S. Neurofilament phosphorylation regulates axonal transport by an indirect mechanism: a merging of opposing hypotheses. Cytoskeleton (Hoboken). 2011; 68(11):589-595. [25] Kanbayashi H, Itoh H, Kashiwaya T, et al. Spatial distribution of nociceptive neuropeptide and nerve growth factor depletion in experimental diabetic peripheral nervous system. J Int Med Res. 2002;30(5): 512-519.[26] Gezginci-Oktayoglu S, Sacan O, Yanardag R, et al. Exendin-4 improves hepatocyte injury by decreasing proliferation through blocking NGF/TrkA in diabetic mice. Peptides. 2011;32(2):223-231. [27] Castro A, Manso MJ, Anadón R. Distribution of neuropeptide Y immunoreactivity in the central and peripheral nervous systems of amphioxus (Branchiostoma lanceolatum Pallas). J Comp Neurol. 2003;461(3): 350-361.[28] Zhaohui Z, Jingzhu Z, Guipeng D, et al. Role of neuropeptide Y in regulating hypothalamus-pituitary- gonad axis in the rats treated with electro-acupuncture. Neuropeptides. 2012;46(3):133-139. [29] Férézou I, Hill EL, Cauli B, et al. Extensive overlap of mu-opioid and nicotinic sensitivity in cortical interneurons. Cereb Cortex. 2007;17(8):1948-1957. [30] Gonsalvez DG, Kerman IA, McAllen RM, et al. Chemical coding for cardiovascular sympathetic preganglionic neurons in rats. J Neurosci. 2010;30(35):11781-11791.[31] Onuoha GN, Nicholls DP, Alpar EK, et al. Regulatory peptides in the heart and major vessels of man and mammals. Neuropeptides. 1999;33(2):165-172.[32] Baldassano S, Wang GD, Mulè F, et al. Glucagon-like peptide-1 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro. Am J Physiol Gastrointest Liver Physiol. 2012;302(3): G352-358.[33] Jacques D, Sader S, El-Bizri N, et al. Neuropeptide Y induced increase of cytosolic and nuclear Ca2+ in heart and vascular smooth muscle cells. Can J Physiol Pharmacol. 2000;78(2):162-172.[34] Jacques D, Abdel-Samad D. Neuropeptide Y (NPY) and NPY receptors in the cardiovascular system: implication in the regulation of intracellular calcium. Can J Physiol Pharmacol. 2007;85(1):43-53.[35] The Ministry of Science and Technology of the People’s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30. [36] Xiang X, Wang Z, Zhu Y, et al. Dosage of streptozocin in inducing rat model of type 2 diabetes mellitus. Wei Sheng Yan Jiu. 2010;39(2):138-142.[37] Li X, Cui X, Sun X, et al. Mangiferin prevents diabetic nephropathy progression in streptozotocin-induced diabetic rats. Phytother Res. 2010;24(6):893-899.[38] Zhan YL, Huang CF, Chen GL. Hypoglycemic activity of the decoction of cocoon shell on alloxan-diabetic model mice. Canye Kexue. 2003;29(4):446-448. [39] Chen ZH, He YQ, Fu WL, et al. Effects of sericin on heme oxygenase-1 expression in the hippocampus and cerebral cortex of type 2 diabetes mellitus rats. Neural Regen Res. 2011;6(6):423-427.[40] Kikuno N, Kawamoto K, Hirata H, et al. Nerve growth factor combined with vascular endothelial growth factor enhances regeneration of bladder acellular matrix graft in spinal cord injury-induced neurogenic rat bladder. BJU Int. 2009;103(10):1424-1428. [41] Chen ZH, He YQ, Song CJ, et al. Sericin can reduce hippocampal neuronal apoptosis by activating the Akt signal transduction pathway in a rat model of diabetes mellitus. Neural Regen Res. 2012;7(3):197-201. |
[1] | Sara Saffari, Tiam M. Saffari, Dietmar J. O. Ulrich, Steven E. R. Hovius, Alexander Y. Shin. The interaction of stem cells and vascularity in peripheral nerve regeneration [J]. Neural Regeneration Research, 2021, 16(8): 1510-1517. |
[2] | Wan-Chao Yang, Hong-Ling Cao, Yue-Zhen Wang, Ting-Ting Li, Hong-Yu Hu, Qiang Wan, Wen-Zhi Li. Inhibition of nitric oxide synthase aggravates brain injury in diabetic rats with traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(8): 1574-1581. |
[3] | Yu-Song Yuan, Fei Yu, Ya-Jun Zhang, Su-Ping Niu, Hai-Lin Xu, Yu-Hui Kou. Changes in proteins related to early nerve repair in a rat model of sciatic nerve injury [J]. Neural Regeneration Research, 2021, 16(8): 1622-1627. |
[4] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[5] | Allison S. Liang, Joanna E. Pagano, Christopher A. Chrzan, Randall D. McKinnon. Suicide transport blockade of motor neuron survival generates a focal graded injury and functional deficit [J]. Neural Regeneration Research, 2021, 16(7): 1281-1287. |
[6] | Lixia Li, Yizhou Xu, Xianghai Wang, Jingmin Liu, Xiaofang Hu, Dandan Tan, Zhenlin Li, Jiasong Guo. Ascorbic acid accelerates Wallerian degeneration after peripheral nerve injury [J]. Neural Regeneration Research, 2021, 16(6): 1078-1085. |
[7] | Daniel J. Hellenbrand, Clayton L. Haldeman, Jae-Sung Lee, Angela G. Gableman, Elena K. Dai, Stephen D. Ortmann, Jerrod C. Gotchy, Kierra K. Miller, Adrianna M. Doucas, Nicole C. Nowak, William L. Murphy, Amgad S. Hanna. Functional recovery after peripheral nerve injury via sustained growth factor delivery from mineral-coated microparticles [J]. Neural Regeneration Research, 2021, 16(5): 871-877. |
[8] | Xiao-Qing Cheng, Wen-Jing Xu, Xiao Ding, Gong-Hai Han, Shuai Wei, Ping Liu, Hao-Ye Meng, Ai-Jia Shang, Yu Wang, Ai-Yuan Wang. Bioinformatic analysis of cytokine expression in the proximal and distal nerve stumps after peripheral nerve injury [J]. Neural Regeneration Research, 2021, 16(5): 878-884. |
[9] | Mariam Rizk, Justin Vu, Zhi Zhang. Impact of pediatric traumatic brain injury on hippocampal neurogenesis [J]. Neural Regeneration Research, 2021, 16(5): 926-933. |
[10] | Magdalini Tsintou, Kyriakos Dalamagkas, Tara L. Moore, Yogesh Rathi, Marek Kubicki, Douglas L. Rosene, Nikos Makris. The use of hydrogel-delivered extracellular vesicles in recovery of motor function in stroke: a testable experimental hypothesis for clinical translation including behavioral and neuroimaging assessment approaches [J]. Neural Regeneration Research, 2021, 16(4): 605-613. |
[11] | Lu Qin, Jianhua Li. Nerve growth factor in muscle afferent neurons of peripheral artery disease and autonomic function [J]. Neural Regeneration Research, 2021, 16(4): 694-699. |
[12] | Joseph A. Shehadi, Steven M. Elzein, Paul Beery, M. Chance Spalding, Michelle Pershing. Combined administration of platelet rich plasma and autologous bone marrow aspirate concentrate for spinal cord injury: a descriptive case series [J]. Neural Regeneration Research, 2021, 16(2): 362-366. |
[13] | Na-Ying Xue, Dong-Yu Ge, Rui-Juan Dong, Hyung-Hwan Kim, Xiu-Jun Ren, , Ya Tu. Effect of electroacupuncture on glial fibrillary acidic protein and nerve growth factor in the hippocampus of rats with hyperlipidemia and middle cerebral artery thrombus [J]. Neural Regeneration Research, 2021, 16(1): 137-142. |
[14] | Jing Wang, Ya-Qiong Zhu, Yu Wang, Hong-Guang Xu, Wen-Jing Xu, Yue-Xiang Wang, Xiao-Qing Cheng, Qi Quan, Yong-Qiang Hu, Chang-Feng Lu, Yan-Xu Zhao, Wen Jiang, Chen Liu, Liang Xiao, Wei Lu, Chen Zhu, Ai-Yuan Wang . A novel tissue engineered nerve graft constructed with autologous vein and nerve microtissue repairs a long-segment sciatic nerve defect [J]. Neural Regeneration Research, 2021, 16(1): 143-149. |
[15] | Jin-Hui Xu, Xu-Zhen Qin, Hao-Nan Zhang, Yan-Xia Ma, Shi-Bin Qi, Hong-Cheng Zhang, Jin-Jin Ma, Xin-Ya Fu, Ji-Le Xie, Saijilafu. Deletion of Krüppel-like factor-4 promotes axonal regeneration in mammals [J]. Neural Regeneration Research, 2021, 16(1): 166-171. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||