Neural Regeneration Research ›› 2021, Vol. 16 ›› Issue (8): 1574-1581.doi: 10.4103/1673-5374.303035

Previous Articles     Next Articles

Inhibition of nitric oxide synthase aggravates brain injury in diabetic rats with traumatic brain injury

Wan-Chao Yang1, #, Hong-Ling Cao2, #, Yue-Zhen Wang1, Ting-Ting Li1, Hong-Yu Hu1, Qiang Wan1, Wen-Zhi Li1,*   

  1. 1Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; 2Department of Anesthesiology, Jilin Province Tumor Hospital, Changchun, Jilin Province, China
  • Online:2021-08-15 Published:2021-01-13
  • Contact: Wen-Zhi Li, MD, Wenzhili9@126.com.
  • Supported by:
    This study was supported by the National Natural Science Foundation of China, No. 81400989 (to WCY).

Abstract: Studies have shown that hyperglycemia aggravates brain damage by affecting vascular endothelial function. However, the precise mechanism remains unclear. Male Sprague-Dawley rat models of diabetes were established by a high-fat diet combined with an intraperitoneal injection of streptozotocin. Rat models of traumatic brain injury were established using the fluid percussion method. Compared with traumatic brain injury rats without diabetic, diabetic rats with traumatic brain injury exhibited more severe brain injury, manifested as increased brain water content and blood-brain barrier permeability, the upregulation of heme oxygenase-1, myeloperoxidase, and Bax, the downregulation of occludin, zona-occludens 1, and Bcl-2 in the penumbra, and reduced modified neurological severity scores. The intraperitoneal injection of a nitric oxide synthase inhibitor N(5)-(1-iminoethyl)-L-ornithine (10 mg/kg) 15 minutes before brain injury aggravated the injury. These findings suggested that nitric oxide synthase plays an important role in the maintenance of cerebral microcirculation, including anti-inflammatory, anti-oxidative stress, and anti-apoptotic activities in diabetic rats with traumatic brain injury. The experimental protocols were approved by the Institutional Animal Care Committee of Harbin Medical University, China (approval No. ky2017-126) on March 6, 2017.

Key words: apoptosis, blood-brain barrier, brain edema, diabetes mellitus, inflammation, injury, neurological function, nitric oxide synthase, traumatic brain injury