Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (2): 156-161.doi: 10.3969/j.issn.1673-5374.2013.02.008
Previous Articles Next Articles
Zhaoyang Li1, Bing Du1, Shengyang Li1, 2, Xiangchuan Lv1, Shenglai Zhou1, Yang Yu1, Wei Wang1, Zhihong Zheng1
Received:
2012-05-12
Revised:
2012-07-03
Online:
2013-01-15
Published:
2013-01-15
Contact:
Zhihong Zheng, M.D., Professor, Key Laboratory of Transgenetic Animal Research, Department of Laboratory Animal, China Medical University, Shenyang 110001, Liaoning Province, China,
zhihongzheng@163.com.
About author:
Zhaoyang Li★, Master, Lecturer.
Supported by:
This study was supported by grants from the National Natural Science Foundation of China, No. 30770818; a grant from Education Department of Liaoning Province, No. 2009s109.
Zhaoyang Li, Bing Du, Shengyang Li, Xiangchuan Lv, Shenglai Zhou, Yang Yu, Wei Wang, Zhihong Zheng. Cloning and characterization of an apolipoprotein C2 promoter in the mouse central nervous system[J]. Neural Regeneration Research, 2013, 8(2): 156-161.
1. Dietschy JM, Turley SD. Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res. 2004;45(8):1375-1397.http://www.jlr.org/content/45/8/1375.long2. Havel RJ, Shore VG, Shore B, et al. Role of specific glycopeptides of human serum lipoproteins in the activation of lipoprotein lipase. Circ Res. 1970;27(4):595-600.http://circres.ahajournals.org/content/27/4/595.long3. LaRosa JC, Levy RI, Herbert P, et al. A specific apoprotein activator for lipoprotein lipase. Biochem Biophys Res Commun. 1970;41(1):57-62.http://www.sciencedirect.com/science/article/pii/0006291X709046874. Breckenridge WC, Little JA, Steiner G, et al. Hypertriglyceridemia associated with deficiency of apolipoprotein C-II. N Engl J Med. 1978;298(23):1265-1273.http://www.nejm.org/doi/full/10.1056/NEJM1978060829823015. Yu CE, Payami H, Olson JM, et al. The apolipoprotein E/CI/CII gene cluster and late-onset Alzheimer disease. Am J Hum Genet. 1994;54(4):631-642.http://ukpmc.ac.uk/articles/PMC1918105//reload=0;jsessionid=gRymaFMEBWrDdhDyYVlZ.06. Kamino K, Yoshiiwa A, Nishiwaki Y, et al Genetic association study between senile dementia of Alzheimer's type and APOE/C1/C2 gene cluster. Gerontology. 1996;42 Suppl 1:12-19. http://www.ncbi.nlm.nih.gov/pubmed?term=Genetic%20association%20study%20between%20senile%20dementia%20of%20Alzheimer's%20type%20and%20APOE%2FC1%2FC2%20gene%20cluster7. Adunsky A, Chesnin V, Davidson M, et al. A cross-sectional study of lipids and ApoC levels in Alzheimer's patients with and without cardiovascular disease. J Gerontol A Biol Sci Med Sci. 2002;57(11):M757-761. http://www.ncbi.nlm.nih.gov/pubmed/124038068. Schellenberg GD, Boehnke M, Wijsman EM, et al. Genetic association and linkage analysis of the apolipoprotein CII locus and familial Alzheimer's disease. Ann Neurol. 1992;31(2):223-227.http://www.ncbi.nlm.nih.gov/pubmed/13494679. Wilson CJ, Priore Oliva C, Maggi F, et al. Apolipoprotein C-II deficiency presenting as a lipid encephalopathy in infancy. Ann Neurol. 2003;53(6):807-810. http://onlinelibrary.wiley.com/doi/10.1002/ana.10598/abstract;jsessionid=2266F97E849F765532E571A125B28716.d03t0310. Swarup V, Srivastava AK, Rajeswari MR. Identification and quantification of differentially expressed proteins in plasma of spinocerebellar ataxia type 12. Neurosci Res. 2012; 73(2):161-167. http://www.sciencedirect.com/science/article/pii/S016801021200052111. Hoffer MJ, van Eck MM, Havekes LM, et al. Structure and expression of the mouse apolipoprotein C2 gene. Genomics. 1993;17(1):45-51. http://www.sciencedirect.com/science/article/pii/S088875438371281412. Jong MC, Hofker MH, Havekes LM. Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol. 1999;19(3):472-484. http://atvb.ahajournals.org/content/19/3/472.full13. Shen Y, Lookene A, Zhang L, et al. Site-directed mutagenesis of apolipoprotein CII to probe the role of its secondary structure for activation of lipoprotein lipase. J Biol Chem. 2010;285(10):7484-7492. http://www.jbc.org/content/285/10/7484/suppl/DC114. Xiong WJ, Li WH, Posner I, et al. No severe bottleneck during human evolution: evidence from two apolipoprotein C-II deficiency alleles. Am J Hum Genet. 1991;48(2):383-389. http://www.researchgate.net/publication/21164854_No_severe_bottleneck_during_human_evolution_evidence_from_two_apolipoprotein_C-II_deficiency_alleles15. Weickert CS, Elashoff M, Richards AB, et al. Transcriptome analysis of male–female differences in prefrontal cortical development. Mol Psychiatry. 2009;14(6):558-561. http://dx.doi.org/10.1038/mp.2009.516. Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207-210. http://nar.oxfordjournals.org/content/30/1/207.long17. Harris LW, Lockstone HE, Khaitovich P, et al. Gene expression in the prefrontal cortex during adolescence: implications for the onset of schizophrenia. BMC Med Genomics. 2009;2:28. http://www.biomedcentral.com/1755-8794/2/2818. Herdegen T, Kummer W, Fiallos CE, et al. Expression of c-JUN, JUN B and JUN D proteins in rat nervous system following transection of vagus nerve and cervical sympathetic trunk. Neuroscience. 1991;45(2):413-422. http://www.sciencedirect.com/science/article/pii/030645229190237I19. Kenney AM, Kocsis JD. Peripheral axotomy induces long-term c-Jun amino-terminal kinase-1 activation and activator protein-1 binding activity by c-Jun and junD in adult rat dorsal root ganglia in vivo. J Neurosci. 1998;18(4):1318-1328. http://www.jneurosci.org/content/18/4/1318.full.pdf 20. Mason MR, Lieberman AR, Anderson PN. Corticospinal neurons up-regulate a range of growth-associated genes following intracortical, but not spinal, axotomy. Eur J Neurosci. 2003;18(4):789-802. http://onlinelibrary.wiley.com/doi/10.1046/j.1460-9568.2003.02809.x/abstract21. Raivich G, Bohatschek M, Da Costa C, et al. The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron. 2004;43(1):57-67. http://www.sciencedirect.com/science/article/pii/S089662730400357522. Lindwall C, Kanje M. Retrograde axonal transport of JNK signaling molecules influence injury induced nuclear changes in p-c-Jun and ATF3 in adult rat sensory neurons. Mol Cell Neurosci. 2005;29(2):269-282. http://www.ncbi.nlm.nih.gov/pubmed/15911351 23. Donohoe ME, Zhang X, McGinnis L,et al. Targeted disruption of mouse Yin Yang 1 transcription factor results in peri-implantation lethality. Mol Cell Biol. 1999;19(10):7237-7244. http://mcb.asm.org/content/19/10/7237.long24. Kwon HJ, Chung HM. Yin Yang 1, a vertebrate polycomb group gene, regulates antero-posterior neural patterning. Biochem Biophys Res Commun. 2003;306(4):1008-1013. http://www.sciencedirect.com/science/article/pii/S0006291X0301071425. Morgan MJ, Woltering JM, In der Rieden PM, et al. YY1 regulates the neural crest-associated slug gene in Xenopus laevis. J Biol Chem. 2004;279(45):46826-46834. http://www.jbc.org/content/279/45/46826.long26. Nowak K, Lange-Dohna C, Zeitschel U,et al. The transcription factor Yin Yang 1 is an activator of BACE1 expression. J Neurochem. 2006;96(6):1696-1707.http://onlinelibrary.wiley.com/doi/10.1111/j.1471-4159.2006.03692.x/abstract27. Kaczynski J, Cook T, Urrutia R. Sp1 and Krüppel-like transcription factors. Genome Biol. 2003;4(2):206. http://genomebiology.com/content/4/2/20628. Suske G, Bruford E, Philipsen S. Mammalian SP/KLF transcription factors: bring in the family. Genomics. 2005;85(5):551-556.http://www.sciencedirect.com/science/article/pii/S088875430500011X29. Mao XR, Moerman-Herzog AM, Chen Y, et al. Unique aspects of transcriptional regulation in neurons--nuances in NFkappaB and Sp1-related factors. J Neuroinflammation. 2009;6:16. [DOI] http://www.jneuroinflammation.com/content/6/1/16 |
[1] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[2] | Mariam Rizk, Justin Vu, Zhi Zhang. Impact of pediatric traumatic brain injury on hippocampal neurogenesis [J]. Neural Regeneration Research, 2021, 16(5): 926-933. |
[3] | Magdalini Tsintou, Kyriakos Dalamagkas, Tara L. Moore, Yogesh Rathi, Marek Kubicki, Douglas L. Rosene, Nikos Makris. The use of hydrogel-delivered extracellular vesicles in recovery of motor function in stroke: a testable experimental hypothesis for clinical translation including behavioral and neuroimaging assessment approaches [J]. Neural Regeneration Research, 2021, 16(4): 605-613. |
[4] | Joseph A. Shehadi, Steven M. Elzein, Paul Beery, M. Chance Spalding, Michelle Pershing. Combined administration of platelet rich plasma and autologous bone marrow aspirate concentrate for spinal cord injury: a descriptive case series [J]. Neural Regeneration Research, 2021, 16(2): 362-366. |
[5] | Susan R. Goulding, Aideen M. Sullivan , Gerard W. O’Keeffe , Louise M. Collins. The potential of bone morphogenetic protein 2 as a neurotrophic factor for Parkinson’s disease [J]. Neural Regeneration Research, 2020, 15(8): 1432-1436. |
[6] | Ya Zheng, Ye-Ran Mao, Ti-Fei Yuan , Dong-Sheng Xu , Li-Ming Cheng. Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation [J]. Neural Regeneration Research, 2020, 15(8): 1437-1450. |
[7] | Peter J.G. Cussell, Margarita Gomez Escalada, Nathaniel G.N. Milton, Andrew W.J. Paterson. The N-formyl peptide receptors: contemporary roles in neuronal function and dysfunction [J]. Neural Regeneration Research, 2020, 15(7): 1191-1198. |
[8] | Feng-Jiao Li, Si-Ru Zheng, Dong-Mei Wang. Adrenomedullin: an important participant in neurological diseases [J]. Neural Regeneration Research, 2020, 15(7): 1199-1207. |
[9] | Duo Zhang, Di Zhu, Fang Wang, Ji-Chao Zhu, Xu Zhai, Yuan Yuan, Chen-Xi Li. Therapeutic effect of regulating autophagy in spinal cord injury: a network meta-analysis of direct and indirect comparisons [J]. Neural Regeneration Research, 2020, 15(6): 1120-1132. |
[10] | Mehmet Ilyas Cosacak, Prabesh Bhattarai, Caghan Kizil. Alzheimer’s disease, neural stem cells and neurogenesis: cellular phase at single-cell level [J]. Neural Regeneration Research, 2020, 15(5): 824-827. |
[11] | Li-Min Guo, Zhen Wang, Shi-Ping Li, Mi Wang, Wei-Tao Yan, Feng-Xia Liu, Chu-Dong Wang, Xu-Dong Zhang, Dan Chen, Jie Yan, Kun Xiong. RIP3/MLKL-mediated neuronal necroptosis induced by methamphetamine at 39°C [J]. Neural Regeneration Research, 2020, 15(5): 865-874. |
[12] | Dao-Xia Guo, Zheng-Bao Zhu, Chong-Ke Zhong, Xiao-Qing Bu, Li-Hua Chen, Tan Xu, Li-Bing Guo, Jin-Tao Zhang, Dong Li, Jian-Hui Zhang, Zhong Ju, Chung-Shiuan Chen, Jing Chen, Yong-Hong Zhang, Jiang He. Serum cystatin C levels are negatively correlated with post-stroke cognitive dysfunction [J]. Neural Regeneration Research, 2020, 15(5): 922-928. |
[13] | Dong-Qi Lin, Xin-Ying Cai, Chun-Hua Wang, Bin Yang, Ri-Sheng Liang. Optimal concentration of necrostatin-1 for protecting against hippocampal neuronal damage in mice with status epilepticus [J]. Neural Regeneration Research, 2020, 15(5): 936-943. |
[14] | Bing Chen, Lauren Carr, Xin-Peng Dun. Dynamic expression of Slit1–3 and Robo1–2 in the mouse peripheral nervous system after injury [J]. Neural Regeneration Research, 2020, 15(5): 948-958. |
[15] | Deepak Jain, Sabrina Mattiassi, Eyleen L. Goh, Evelyn K.F. Yim. Extracellular matrix and biomimetic engineering microenvironment for neuronal differentiation [J]. Neural Regeneration Research, 2020, 15(4): 573-585. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||