Neural Regeneration Research ›› 2012, Vol. 7 ›› Issue (34): 2663-2672.doi: 10.3969/j.issn.1673-5374.2012.34.003
Previous Articles Next Articles
Jianjun Li1, Dong Li2, Xiuli Ju2, Qing Shi2, Dakun Wang2, Fengcai Wei3
Received:
2012-09-29
Revised:
2012-11-16
Online:
2012-12-05
Published:
2012-11-16
Contact:
Dong Li, M.D., Associate professor, Cryomedicine Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
lidong73@sdu.edu.cn
About author:
Jianjun Li★, Master, Associate chief physician, Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
Supported by:
This work was supported by grants from the Shandong Province Science and Technology Program, Grant No. 2011GSF11801; and the Innovation Fund Project of Shandong University, Grant No. 2012ZD023; the Major State Basic Research Development Program, Grant No. 2012CB966504.
Jianjun Li, Dong Li, Xiuli Ju, Qing Shi, Dakun Wang, Fengcai Wei. Umbilical cord-derived mesenchymal stem cells retain immunomodulatory and anti-oxidative activities after neural induction[J]. Neural Regeneration Research, 2012, 7(34): 2663-2672.
[1] Williams AR, Hare JM. Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res. 2011;109(8): 923-940. [2] Musumeci G, Lo Furno D, Loreto C, et al. Mesenchymal stem cells from adipose tissue which have been differentiated into chondrocytes in three-dimensional culture express lubricin. Exp Biol Med (Maywood). 2011; 236(11):1333-1341. [3] Matsushita K, Morello F, Wu Y, et al. Mesenchymal stem cells differentiate into renin-producing juxtaglomerular (JG)-like cells under the control of liver X receptor-alpha. J Biol Chem. 2010;285(16):11974-11982. [4] Johnson TV, Bull ND, Hunt DP, et al. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol Vis Sci. 2010;51(4):2051-2059. [5] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143-147.[6] Sanchez-Ramos JR. Neural cells derived from adult bone marrow and umbilical cord blood. J Neurosci Res. 2002; 69(6):880-893.[7] Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000;164(2):247-256.[8] Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000;61(4):364-370.[9] Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32(4): 1005-1011.[10] Kurozumi K, Nakamura K, Tamiya T, et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther. 2005;11(1):96-104.[11] Mahmood A, Lu D, Wang L, et al. Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery. 2001;49(5): 1196-1204.[12] Alexanian AR, Fehlings MG, Zhang Z, et al. Transplanted neurally modified bone marrow-derived mesenchymal stem cells promote tissue protection and locomotor recovery in spinal cord injured rats. Neurorehabil Neural Repair. 2011;25(9):873-880. [13] Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007;110(10): 3499-3506[14] Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815-1822. [15] Atoui R, Shum-Tim D, Chiu RC. Myocardial regenerative therapy: immunologic basis for the potential "universal donor cells". Ann Thorac Surg. 2008;86(1):327-334.[16] Chen YT, Sun CK, Lin YC, et al. Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J Transl Med. 2011;9:51.[17] Sun DC, Li DH, Ji HC, et al. In vitro culture and characterization of alveolar bone osteoblasts isolated from type 2 diabetics. Braz J Med Biol Res. 2012;45(6): 502-509. [18] Park HE, Kim D, Koh HS, et al. Real-time monitoring of neural differentiation of human mesenchymal stem cells by electric cell-substrate impedance sensing. J Biomed Biotechnol. 2011;2011:485173. [19] Kubulus D, Roesken F, Amon M, et al. Mechanism of the delay phenomenon: tissue protection is mediated by heme oxygenase-1. Am J Physiol Heart Circ Physiol. 2004;287(5):H2332-2340. [20] Brazelton TR, Rossi FM, Keshet GI, et al. From marrow to brain: expression of neuronal phenotypes in adult mice. Science. 2000;290(5497):1775-1779.[21] Nakano K, Migita M, Mochizuki H, et al. Differentiation of transplanted bone marrow cells in the adult mouse brain. Transplantation. 2001;71(12):1735-1740.[22] Kohyama J, Abe H, Shimazaki T, et al. Brain from bone: efficient "meta-differentiation" of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation. 2001;68(4-5): 235-244.[23] Alexanian AR, Maiman DJ, Kurpad SN, et al. In vitro and in vivo characterization of neurally modified mesenchymal stem cells induced by epigenetic modifiers and neural stem cell environment. Stem Cells Dev. 2008;17(6):1123-1130.[24] Muñoz-Elías G, Woodbury D, Black IB. Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells. 2003;21(4):437-448.[25] Woodbury D, Reynolds K, Black IB. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res. 2002;69(6):908-917.[26] Barnabé GF, Schwindt TT, Calcagnotto ME, et al. Chemically-induced RAT mesenchymal stem cells adopt molecular properties of neuronal-like cells but do not have basic neuronal functional properties. PLoS One. 2009; 4(4):e5222. [27] Peng J, Wang Y, Zhang L, et al. Human umbilical cord Wharton's jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro. Brain Res Bull. 2011;84(3): 235-243.[28] Ladak A, Olson J, Tredget EE, et al. Differentiation of mesenchymal stem cells to support peripheral nerve regeneration in a rat model. Exp Neurol. 2011;228(2): 242-252.[29] Khoo ML, Tao H, Meedeniya AC, et al. Transplantation of neuronal-primed human bone marrow mesenchymal stem cells in hemiparkinsonian rodents. PLoS One. 2011;6(5): e19025. [30] Pacary E, Legros H, Valable S, et al. Synergistic effects of CoCl(2) and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells. J Cell Sci. 2006; 119(Pt 13):2667-2678. [31] Padovan CS, Jahn K, Birnbaum T, et al. Expression of neuronal markers in differentiated marrow stromal cells and CD133+ stem-like cells. Cell Transplant. 2003;12(8): 839-848.[32] Tondreau T, Lagneaux L, Dejeneffe M, et al. Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation. 2004;72(7):319-326.[33] Salim A, Nacamuli RP, Morgan EF, et al. Transient changes in oxygen tension inhibit osteogenic differentiation and Runx2 expression in osteoblasts. J Biol Chem. 2004;279(38):40007-40016. [34] Dehmelt L, Smart FM, Ozer RS, et al. The role of microtubule-associated protein 2c in the reorganization of microtubules and lamellipodia during neurite initiation. J Neurosci. 2003;23(29):9479-9490.[35] Bunnell BA, Betancourt AM, Sullivan DE. New concepts on the immune modulation mediated by mesenchymal stem cells. Stem Cell Res Ther. 2010;1(5):34.[36] Zhang Q, Shi S, Liu Y, et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol. 2009;183(12):7787-7798.[37] Spaggiari GM, Capobianco A, Abdelrazik H, et al. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood. 2008;111(3):1327-1333.[38] DelaRosa O, Lombardo E, Beraza A, et al. Requirement of IFN-gamma-mediated indoleamine 2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human adipose-derived stem cells. Tissue Eng Part A. 2009;15(10):2795-2806.[39] Wang M, Yang Y, Yang D, et al. The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology. 2009; 126(2):220-232. [40] Ding Y, Xu D, Feng G, et al. Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes. 2009;58(8):1797-1806. [41] Chabannes D, Hill M, Merieau E, et al. A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood. 2007;110(10): 3691-3694. [42] Schäfer S, Calas AG, Vergouts M, et al. Immunomodulatory influence of bone marrow-derived mesenchymal stem cells on neuroinflammation in astrocyte cultures. J Neuroimmunol. 2012;249(1-2):40-48. [43] Hunt JS, Petroff MG, McIntire RH, et al. HLA-G and immune tolerance in pregnancy. FASEB J. 2005;19(7): 681-693.[44] Lu LL, Liu YJ, Yang SG, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica. 2006;91(8):1017-1026. [45] Lee OK, Kuo TK, Chen WM, et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103(5):1669-1675. [46] Elkabetz Y, Panagiotakos G, Al Shamy G, et al. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev. 2008;22(2): 152-165.[47] Barber RD, Jaworsky DE, Yau KW, et al. Isolation and in vitro differentiation of conditionally immortalized murine olfactory receptor neurons. J Neurosci. 2000;20(10): 3695-3704.[48] Ohori Y, Yamamoto S, Nagao M, et al. Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord. J Neurosci. 2006;26(46):11948-11960.[49] Kuçi S, Kuçi Z, Kreyenberg H, et al. CD271 antigen defines a subset of multipotent stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting properties. Haematologica. 2010;95(4):651-659. |
[1] | Isaac G. Onyango, James P. Bennett, Jr, Gorazd B. Stokin. Regulation of neuronal bioenergetics as a therapeutic strategy in neurodegenerative diseases [J]. Neural Regeneration Research, 2021, 16(8): 1467-1482. |
[2] | Yu Li, Ping-Ping Shen, Bin Wang. Induced pluripotent stem cell technology for spinal cord injury: a promising alternative therapy [J]. Neural Regeneration Research, 2021, 16(8): 1500-1509. |
[3] | Femke Mathot, Nadia Rbia, Roman Thaler, Allan B. Dietz, Andre J. van Wijnen, Allen T. Bishop, Alexander Y. Shin. Gene expression profiles of human adipose-derived mesenchymal stem cells dynamically seeded on clinically available processed nerve allografts and collagen nerve guides [J]. Neural Regeneration Research, 2021, 16(8): 1613-1621. |
[4] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[5] | Li-Jian Zhang, Yao Chen, Lu-Xuan Wang, Xiao-Qing Zhuang He-Chun Xia. Identification of potential oxidative stress biomarkers for spinal cord injury in erythrocytes using mass spectrometry [J]. Neural Regeneration Research, 2021, 16(7): 1294-1301. |
[6] | Jolanta Dorszewska, Marta Kowalska, Michał Prendecki, Thomas Piekut, Joanna Kozłowska, Wojciech Kozubski. Oxidative stress factors in Parkinson’s disease [J]. Neural Regeneration Research, 2021, 16(7): 1383-1391. |
[7] | Zhe Cheng, Feng-Wu Li, Christopher R. Stone, Kenneth Elkin, Chang-Ya Peng, Redina Bardhi, Xiao-Kun Geng, Yu-Chuan Ding. Normobaric oxygen therapy attenuates hyperglycolysis in ischemic stroke [J]. Neural Regeneration Research, 2021, 16(6): 1017-1023. |
[8] | Ning Liu, Liang Zeng, Yi-Ming Zhang, Wang Pan, Hong Lai. Astaxanthin alleviates pathological brain aging through the upregulation of hippocampal synaptic proteins [J]. Neural Regeneration Research, 2021, 16(6): 1062-1067. |
[9] | Viviane Rostirola Elsner, Lucieli Trevizol, Isadora de Leon, Marcos da Silva, Thayná Weiss, Milena Braga, Daniela Pochmann, Amanda Stolzenberg Blembeel, Caroline Dani, Elenice Boggio. Therapeutic effectiveness of a single exercise session combined with WalkAide functional electrical stimulation in post-stroke patients: a crossover design study [J]. Neural Regeneration Research, 2021, 16(5): 805-812. |
[10] | Mariam Rizk, Justin Vu, Zhi Zhang. Impact of pediatric traumatic brain injury on hippocampal neurogenesis [J]. Neural Regeneration Research, 2021, 16(5): 926-933. |
[11] | Xi Xu, Dong-Sheng Xu. Prospects for the application of transcranial magnetic stimulation in diabetic neuropathy [J]. Neural Regeneration Research, 2021, 16(5): 955-962. |
[12] | Filip Olegovich Fadeev, Farid Vagizovich Bashirov, Vahe Arshaluysovich Markosyan, Andrey Alexandrovich Izmailov, Tatyana Vyacheslavovna Povysheva, Mikhail Evgenyevich Sokolov, Maxim Sergeevich Kuznetsov, Anton Alexandrovich Eremeev, Ilnur Ildusovich Salafutdinov, Albert Anatolyevich Rizvanov, Hyun Joon Lee, Rustem Robertovich Islamov. Combination of epidural electrical stimulation with ex vivo triple gene therapy for spinal cord injury: a proof of principle study [J]. Neural Regeneration Research, 2021, 16(3): 550-560. |
[13] |
Juan Rodriguez, Tao Li, Yiran Xu, Yanyan Sun, Changlian Zhu.
Role of apoptosis-inducing factor in perinatal hypoxic-ischemic brain injury
[J]. Neural Regeneration Research, 2021, 16(2): 205-213.
|
[14] | Joseph A. Shehadi, Steven M. Elzein, Paul Beery, M. Chance Spalding, Michelle Pershing. Combined administration of platelet rich plasma and autologous bone marrow aspirate concentrate for spinal cord injury: a descriptive case series [J]. Neural Regeneration Research, 2021, 16(2): 362-366. |
[15] | Han-A Park, , Katheryn Broman, Elizabeth A. Jonas. Oxidative stress battles neuronal Bcl-xL in a fight to the death [J]. Neural Regeneration Research, 2021, 16(1): 12-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||