中国神经再生研究(英文版) ›› 2024, Vol. 19 ›› Issue (8): 1812-1821.doi: 10.4103/1673-5374.387980

• 原著:周围神经损伤修复保护与再生 • 上一篇    下一篇

成纤维细胞和许旺细胞分泌的外泌体RNA 测序分析周围神经再生机制

  

  • 出版日期:2024-08-15 发布日期:2024-01-03

RNA sequencing of exosomes secreted by fibroblast and Schwann cells elucidates mechanisms underlying peripheral nerve regeneration

Xinyang Zhou1,  2,  #, Yehua Lv3, #, Huimin Xie4, #, Yan Li2, Chang Liu2, Mengru Zheng2, Ronghua Wu2, Songlin Zhou2, Xiaosong Gu1, 2, Jingjing Li5, *, Daguo Mi3, *   

  1. 1Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China; 2Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China; 3Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, Jiangsu Province, China; 4Nantong Stomatological Hospital Affiliated to Nantong University, Nantong, Jiangsu Province, China; 5Department of General Practice, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
  • Online:2024-08-15 Published:2024-01-03
  • Contact: Jingjing Li, MD, 1046037907@qq.com; Daguo Mi, PhD, midaguo@126.com.
  • Supported by:
    This study was supported by the National Natural Science Foundation of China, No. 81870975 (to SZ).

摘要:

以往研究发现,当轴突受损时,来自周围神经系统的成纤维细胞外泌体可以激活特定的基因表达程序或调节机制,抑制瘢痕生长,也可以与其他非神经性外泌体相互作用,发挥调节蛋白质合成和促进轴突再生的作用;然而,其作用机制仍不清楚。实验首先为了解成纤维细胞外泌体和许旺细胞外泌体在轴突再生过程中的功能和相互调节机制,对体外培养获得的成纤维细胞和许旺细胞外泌体进行RNA-seq,分别得到26,504个基因和33,505个基因。紧接着通过差异基因表达,GO分析和KEGG分析发现,成纤维细胞和许旺细胞外泌体都与核糖体功能密切相关。之后通过PPI相互作用网络整合纤维细胞和许旺细胞外泌体中的相关基因,以及体外细胞共培养实验,发现Rps5可以调节不同来源的外泌体的不同功能,同时促进轴突再生。最后,通过miRWalk和Starbase预测数据库,建立了包括5个lncRNAs、27个miRNAs和1个Hub mRNA的lncRNA-miRNA-Rps5 ceRNA网络,并且预测,lncRNA-miRNA-mRNA ceRNA(Ftx和Miat)网络可以更充分地发挥成纤维细胞和许旺细胞外泌体的潜能,将核糖体运送到受损的轴突,促进蛋白质合成,加速轴突再生,抑制瘢痕形成和神经纤维定向分化。实验为进一步探索成纤维细胞和许旺细胞外泌体抑制瘢痕形成、促进神经损伤后轴突再生和功能恢复的作用机制及其在周围神经损伤修复中的应用奠定基础。

https://orcid.org/0000-0002-4944-6383 (Daguo Mi)

Abstract: Exosomes exhibit complex biological functions and mediate a variety of biological processes, such as promoting axonal regeneration and functional recovery after injury. Long non-coding RNAs (lncRNAs) have been reported to play a crucial role in axonal regeneration. However, the role of the lncRNA-microRNA-messenger RNA (mRNA)-competitive endogenous RNA (ceRNA) network in exosome-mediated axonal regeneration remains unclear. In this study, we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts (FC-EXOs) and Schwann cells (SC-EXOs). Differential gene expression analysis, Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, and protein-protein interaction network analysis were used to explore the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs. We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs, which suggests that it may promote axonal regeneration. In addition, using the miRWalk and Starbase prediction databases, we constructed a regulatory network of ceRNAs targeting Rps5, including 27 microRNAs and five lncRNAs. The ceRNA regulatory network, which included Ftx and Miat, revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury. Our findings suggest that exosomes derived from fibroblast and Schwann cells could be used to treat injuries of peripheral nervous system.

Key words: ceRNA network, exosomes, fibroblast cells, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI) networks, RNA-seq, Schwann cells