中国神经再生研究(英文版) ›› 2022, Vol. 17 ›› Issue (1): 87-88.doi: 10.4103/1673-5374.314297

• 观点:神经损伤修复保护与再生 • 上一篇    下一篇

TC10是通过膜供应和微管稳定在轴突再生中必不可少的分子

  

  • 出版日期:2022-01-05 发布日期:2021-09-18

TC10 as an essential molecule in axon regeneration through membrane supply and microtubule stabilization

Takeshi Nakamura*, Shingo Koinuma   

  1. Division of Cell Signaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
  • Online:2022-01-05 Published:2021-09-18
  • Contact: Takeshi Nakamura, DSc, tnakamr@rs.tus.ac.jp.
  • Supported by:
    This work was supported by Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science 20K06880 (to TN).

摘要:

Neural Regen ResTC10在神经系统轴突再生中不可或缺的作用

哺乳动物中枢神经系统神经元成熟后失去轴突再生能力。这种再生失败与胚胎发育期间和周围神经系统损伤后轴突生长的显著潜力形成了鲜明对比。在过去的二十年中,基因操作策略和复合筛选已经确定了几个参与轴突再生的神经元内在参与者。其核心作用是参与蛋白质合成的PTEN/mTOR通路和控制细胞分化/去分化状态的转录因子(如SOCS3KLF家族和SOX11)。生长锥处的细胞骨架动力学和轴突中的物质运输对轴突再生至关重要;目前尚不清楚在受损的中枢神经系统神经元中调节这些功能的成分是如何调节的。TC10Rho家族G蛋白的一员,通过膜运输和微管稳定参与神经突起的生长。在培养的海马神经元中,TC10消融使轴突长度减少了37%,而不影响极化。Exo70是外囊栓系复合体的一个组成部分,与活性TC10结合。以往研究表明TC10-Exo70复合物对于培养的海马神经元和神经生长因子处理的PC12细胞的生长锥处的膜扩张至关重要。TC10敲除海马神经元的生长锥面积比野生型神经元小41%,这种减少部分是由于TC10-Exo70复合物缺失导致的胞吐和膜供应缺陷。TC10可能通过生长锥颈处的微管稳定来限制轴突收缩。PAKTC10效应物之一,可磷酸化和灭活βPix-d(βPix-RhoGEF的微管定位异构体)下游的神经突起促进途径中的微管失稳蛋白stathmin。βPix已被证明能激活TC10

来自日本东京理科大学的Takeshi Nakamura团队认为微管上的βPix-d可能激活微管附近囊泡上的TC10TC10-PAK信号的随后上调导致培养神经元中的stathmin失活、微管稳定和收缩事件的减少。这与囊泡上的TC10活性高于质膜上的TC10活性相一致。多种途径的组合操作有望诱导长距离轴突再生。受损轴突的功能恢复除了轴突再生外,还需要指导、突触形成和再髓鞘化。通过视觉刺激结合雷帕霉素靶蛋白通路的基因激活增强视网膜神经节细的神经活性,可促进视神经损伤后大脑靶区的长距离轴突再生。增强神经活动是一个强大的工具,可以正确地将生长中的轴突导航到。上述研究结果将有助于更有效和更安全的策略,以促进中枢神经系统修复。

    文章在《中国神经再生研究(英文版)》杂志2022 1 1 期发表。

https://orcid.org/0000-0003-2974-6837 (Takeshi Nakamura)

Abstract: Mammalian central nervous system (CNS) neurons lose axon regenerative ability as they mature. This failure to regenerate shows a clear contrast to a remarkable potential of axon growth during embryonic development and after an injury in the peripheral nervous system (PNS) (Hilton and Bradke, 2017). The absence of regeneration in the mature CNS neurons is caused by an inhibitory influence of the environment of the injured axons and the deficit of intrinsic factors that enable regeneration in the PNS (He and Jin, 2016). In the last two decades, gene manipulation strategies and compound screening have identified several neuron-intrinsic players involved in axon regeneration (Ribas and Costa, 2017). The central players are the PTEN/mTOR pathway, which contributes to protein synthesis, and transcription factors (such as SOCS3, KLF family, and SOX11) which control the cell differentiation/de-differentiation status. In addition, cytoskeletal dynamics at growth cones and material transport in axons are essential for axon regrowth; however, it is unclear how the components that regulate these functions are modulated in injured CNS neurons. In this study, we have discussed our recent discovery of an indispensable role of TC10 in CNS and PNS axon regeneration (Koinuma et al., 2020).