中国神经再生研究(英文版) ›› 2022, Vol. 17 ›› Issue (1): 108-109.doi: 10.4103/1673-5374.314303

• 观点:退行性病与再生 • 上一篇    下一篇

CXCR4 / CXCL12信号抑制:阿尔茨海默病治疗的转化视角

  

  • 出版日期:2022-01-05 发布日期:2021-09-18

Inhibition of CXCR4/CXCL12 signaling: a translational perspective for Alzheimer’s disease treatment

Yuval Gavriel, Inna Rabinovich-Nikitin, Beka Solomon*   

  1. The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
  • Online:2022-01-05 Published:2021-09-18
  • Contact: Beka Solomon, PhD, beka@tauex.tau.ac.il.

摘要: Neural Regen Res:抑制CXCR4 / CXCL12信号传导: 干预阿尔茨海默病的创新途径
    CXCR4 / CXCL12轴是参与炎症过程和骨髓内造血干细胞归巢调节的主要信号转导级联之一。募集的小胶质细胞以及神经细胞可能由乳酸的能量供应支持,乳酸通过升高的单羧酸转运蛋白1表达更有效地转运到大脑中。其他可能的机制表明AMD3100作为CXCR4拮抗剂发挥作用,从而抑制毒性炎症过程,从而抑制最终导致认知损伤减弱的磷酸化过程。AMD3100通过增加脑源性神经营养因子的产生和突触素的表达来改善阿尔茨海默病的主要病理学。脑源性神经营养因子和突触素的增加提示突触形成过程的激活可能是神经退行性变过程中可塑性的一种补偿机制。观察到的单羧酸转运蛋白1水平的增加是乳酸被转运到大脑以使这一连串事件发生的机制。乳酸参与了一些细胞过程,包括干扰CXCL12/CXCR4信号轴,增加脑源性神经营养因子水平,减少细胞内Ca2+内流,保护神经元免受谷氨酸毒性。在APP/PS1小鼠模型中,髓鞘的下调与单羧酸转运蛋白1的下调有关,因为两者都与少突胶质细胞有关。有证据表明星形胶质细胞的乳酸转运可能是神经元和髓鞘形成的能量底物。将AMD3100与L-乳酸联合使用并未对小鼠产生任何不良影响,并导致认知/记忆功能的显著改善、髓鞘再生的改善以及阿尔茨海默病病理和神经炎症的减轻。
    来自以色列特拉维夫大学的Beka Solomon团队认为CXCR/CXCL12的多因素作用表明抑制CXCR4/CXCL12信号的途径不仅可以防止胶质细胞谷氨酸的毒性级联释放和神经元凋亡,而且还可能导致造血干/祖细胞快速动员到循环血液中。虽然单羧酸转运蛋白对人类神经疾病的贡献仍需进一步研究,但发表的研究具有启发性,提示单羧酸转运蛋白对维持神经疾病神经元完整性和功能至关重要。由于AMD3100在数小时内而不是几天内动员造血干细胞,因此可以将其视为治疗阿尔茨海默病的干细胞移植的替代方法。AMD3100被认为耐受性良好,且没有明显副作用,这是迄今进行的各种临床试验支持的。抗炎与髓鞘再生成治疗相结合,可减少阿尔茨海默病患者的神经功能障碍,并可能恢复神经功能。这些治疗方法不仅开辟了一条干预阿尔茨海默病的创新途径,而且可能会在较短的时间内推动临床试验,因为重点是重新调整现有已经建立的药物药代动力学和药效学。
    文章在《中国神经再生研究(英文版)》杂志2022年 1 月 1 期发表。

https://orcid.org/0000-0002-0453-1250 (Beka Solomon)

Abstract: The mechanism of AD remains uncovered: The current mainstream doctrine in Alzheimer’s disease (AD) is the amyloid cascade hypothesis. According to this hypothesis, amyloid-β (Aβ) deposition is the main reason for neurofibrillary tangles formation and synaptic dysfunction. However, treatments with antibodies against such targets did not manage to improve cognitive decline and leave some questions regarding the theory of amyloid plaques. Extensive evidence indicates that several pathology changes occur before the appearance of Aβ and tau aggregates. One of the changes is the assault in oligodendrocytes and as a consequence a breakdown of the myelin sheath which is associated with early AD (Dong et al., 2018). Notably, chronic neuroinflammation with sustained activation of microglia and astrocytes may lead to lesion in white matter tracts and disrupt the communication between neurons. Microglia activation and their associated chronic release of inflammatory cytokines in AD subjects attenuate its capacity to clear toxic and harmful substances from the brain which may also underlie the myelin damage. In addition, it was suggested that microglia and immune-related pathways can act as early mediators of synapse loss and dysfunction that occur in AD models before plaques formation. Microglia can exhibit a classically activated phenotype (M1) which exerts toxic effects by secreting proinflammatory cytokines or an alternative activated phenotype (M2) involved in the maintenance of central nervous system homeostasis, phagocytosis of apoptotic bodies or cells, releasing neurotrophic factors, and reducing proinflammatory cytokines. Studies demonstrated that M2 phenotype markers, in contrast to M1 markers, could be modulated in adult microglia, depending on the microenvironment and therefore, have a potential therapeutic effect in neuroinflammation for review see (Tang and Le, 2016.) Apart from resident microglia, another type of microglia has been identified in the brain that originates from monocyte precursor cells from the bone marrow referred as ‘microglia-like” cells. The bone marrow-derived microglia-like cells may cross the blood-brain barrier and migrate into the brain in a chemokine-dependent manner (Kawanishi et al., 2018). In AD, bone marrow-derived cells can access the Aβ-laden brain in higher numbers, as demonstrated in APP23 transgenic mice versus age-matched non-transgenic control mice. Microglia, especially bone marrow derived microglia, has been recently thought to play important roles in internalizing and phagocytizing Aβ oligomers. The invading cells exhibit hematopoietic phenotypes heterogeneously scattered throughout the brain. Hematopoietic stem cells that enter the brain affect brain homeostasis through the secretion of hematopoietic growth factors and cytokines and promote brain repair by increasing neurogenesis