中国神经再生研究(英文版) ›› 2022, Vol. 17 ›› Issue (2): 237-245.doi: 10.4103/1673-5374.317957

• 综述:神经损伤修复保护与再生 •    下一篇

解读PGC-1α在神经系统疾病中的作用:从线粒体功能障碍到突触衰竭

  

  • 出版日期:2022-02-15 发布日期:2021-10-08

Deciphering the role of PGC-1α in neurological disorders: from mitochondrial dysfunction to synaptic failure

Jessica D. Panes1, Aline Wendt1, Oscar Ramirez-Molina1, Patricio A. Castro3, Jorge Fuentealba1, 2, *#br#   

  1. 1Laboratorio de Screening de Compuestos Neuroactivos (LSCN), Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; 2Centro de Investigaciones Avanzadas en Biomedicina (CIAB-UdeC), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; 3Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
  • Online:2022-02-15 Published:2021-10-08
  • Contact: Jorge Fuentealba, PhD, jorgefuentealba@udec.cl.
  • Supported by:
    This work was supported by Fondecyt 1200908 (to JF) and by the Conicyt 21141247 (to JDP).

摘要: Neural Regen Res: PGC-1α在神经退行性疾病病理生理学中的作用
    老年人中较常见的神经病变有阿尔茨海默病、亨廷顿病、帕金森病、肌萎缩侧索硬化症和血管性痴呆,其特征是与大脑中异常蛋白质聚集相关的共同病理生理学特征,例如淀粉样β蛋白、过度磷酸化tau、α-突触核蛋白、亨廷顿蛋白和TAR 43 DNA结合蛋白。目前,尚无有效方法治疗神经退行性疾病,现有的治疗方法主要集中在减轻患者的临床症状上。一些临床试验致力于寻找新的生物标志物,有助于神经退行性疾病临床前或前期的早期诊断。错误折叠蛋白兴奋毒性的关键机制与氧化应激、细胞膜破坏、Ca2+稳态失调、线粒体功能障碍、突触功能衰竭与神经元死亡的快速进展过程有关。主转录辅激活因子过氧化物酶体增殖物激活受体γ辅激活因子1α(PGC-1α)是协调线粒体生物发生、细胞呼吸和能量代谢的主要介质。PGC-1α的转录功能主要受NAD依赖性去乙酰化酶sirtuin-1和5'AMP-活化蛋白激酶的翻译后修饰调节,它们可作为增加腺苷三磷酸产生和线粒体O2消耗的代谢传感器。 
    来自智利康赛普西翁大学的Jorge Fuentealba团队认为神经退行性疾病的主要特征与细胞和分子事件有关,如神经元丢失、线粒体功能障碍和错误折叠蛋白或肽在大脑特定区域的异常积聚。线粒体功能障碍发生在一些与神经退行性疾病相关的神经病理学事件的早期。线粒体质量控制和能量代谢的主要调节者是转录辅激活因子PGC-1α。PGC-1α似乎是维持神经元存活和突触传递的关键因素。已经在一些神经退行性疾病的动物和细胞模型中发现PGC-1α水平下降。PGC-1α的上调可能是一种有效对抗神经元损伤进展的治疗方法。这为神经退行性疾病的治疗开辟了新的分子策略。
文章在《中国神经再生研究(英文版)》杂志2021年 2 月 2 期发表。

https://orcid.org/0000-0003-0686-8102 (Jorge Fuentealba) 

Abstract: The onset and mechanisms underlying neurodegenerative diseases remain uncertain. The main features of neurodegenerative diseases have been related with cellular and molecular events like neuronal loss, mitochondrial dysfunction and aberrant accumulation of misfolded proteins or peptides in specific areas of the brain. The most prevalent neurodegenerative diseases belonging to age-related pathologies are Alzheimer’s disease, Huntington’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Interestingly, mitochondrial dysfunction has been observed to occur during the early onset of several neuropathological events associated to neurodegenerative diseases. The master regulator of mitochondrial quality control and energetic metabolism is the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Additionally, it has been observed that PGC-1α appears to be a key factor in maintaining neuronal survival and synaptic transmission. In fact, PGC-1α downregulation in different brain areas (hippocampus, substantia nigra, cortex, striatum and spinal cord) that occurs in function of neurological damage including oxidative stress, neuronal loss, and motor disorders has been seen in several animal and cellular models of neurodegenerative diseases. Current evidence indicates that PGC-1α upregulation may serve as a potent therapeutic approach against development and progression of neuronal damage. Remarkably, increasing evidence shows that PGC-1α deficient mice have neurodegenerative diseases-like features, as well as neurological abnormalities. Finally, we discuss recent studies showing novel specific PGC-1α isoforms in the central nervous system that appear to exert a key role in the age of onset of neurodegenerative diseases and have a neuroprotective function in the central nervous system, thus opening a new molecular strategy for treatment of neurodegenerative diseases. The purpose of this review is to provide an up-to-date overview of the PGC-1α role in the physiopathology of neurodegenerative diseases, as well as establish the importance of PGC-1α function in synaptic transmission and neuronal survival. 

Key words: Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, mitochondrial dysfunction, Parkinson’s disease, PGC-1α, synaptic function, vascular dementia