中国神经再生研究(英文版) ›› 2022, Vol. 17 ›› Issue (2): 333-335.doi: 10.4103/1673-5374.317979

• 观点:退行性病与再生 • 上一篇    下一篇

脑胰岛素抵抗:唐氏综合症中阿尔茨海默病发展的早期危险因素

  

  • 出版日期:2022-02-15 发布日期:2021-10-08

Brain insulin resistance: an early risk factor for Alzheimer’s disease development in Down syndrome

Eugenio Barone*   

  1. Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, Piazzale A. Moro, Roma, Italy 
  • Online:2022-02-15 Published:2021-10-08
  • Contact: Eugenio Barone, PhD, eugenio.barone@uniroma1.it.
  • Supported by:
    This work was supported by Jerome-Lejeune Foundation grant No. 1887-BE2019B to EB; Fondi Ateneo grant funded by Sapienza University No. RM11715C77336E99 to EB. 

摘要: Neural Regen Res:脑胰岛素抵抗的发展是否会损害认知和学习功能?
    调节葡萄糖代谢的分子,即胰岛素,由于其对学习和记忆、大脑发育和衰老的影响而被广泛研究。脑胰岛素抵抗是指脑细胞对胰岛素的反应不足。有趣的是,在阿尔茨海默病早期观察到脑胰岛素抵抗标记物的累积增加,脑胰岛素抵抗似乎对长期的临床前阶段有很大贡献,在此期间,阿尔茨海默病通常只有轻微的症状明显。大脑胰岛素抵抗会损害突触完整性,β-淀粉样蛋白和Tau也会干扰胰岛素在突触的作用。值得注意的是,突触妥协和大脑胰岛素抵抗被认为在阿尔茨海默病的早期阶段都存在。从机制上讲,脑胰岛素抵抗是由于胰岛素受体的下调或主要由胰岛素受体底物1抑制驱动的胰岛素信号级联的错误激活。事实上,胰岛素受体的下调减少了胰岛素受体蛋白在质膜水平上与胰岛素结合。相反,胰岛素受体底物1的抑制-由特定丝氨酸残基的磷酸化介导(307、312、636)-导致胰岛素受体底物1与胰岛素受体的解偶联,最终导致胰岛素无法促进其下游效应。
    来自意大利罗马第一大学的Eugenio Barone认为胰岛素在啮齿动物和人类的突触可塑性机制和记忆形成中发挥作用,大脑胰岛素抵抗的发展会损害认知和学习功能。脑胰岛素抵抗标记物的累积与突触蛋白(如突触融合蛋白-1、突触后密度蛋白95)的丢失以及人类和Ts65dn小鼠脑中脑源性神经营养因子水平的降低有关。非常有趣的是,在年轻时已经观察到突触融合蛋白-1的持续减少。突触融合蛋白-1的缺失严重损害了体内和体外的神经元活力,表明突触融合蛋白-1在维持发育和成熟神经元中的强制性作用。唐氏综合症中阿尔茨海默病的病理生理学与普通人群中散发性和常染色体显性阿尔茨海默病的病理生理学相似。唐氏综合症和阿尔茨海默病的研究领域有许多协同作用点,包括遗传学、发病机制和临床表现,了解年龄相关的脑胰岛素抵抗标志物的变化可能是设计旨在预防或调节阿尔茨海默病进展的唐氏综合症试验的关键。
    文章在《中国神经再生研究(英文版)》杂志2022年 2 月 2  期发表。

https://orcid.org/0000-0002-7028-4251 (Eugenio Barone) 

Abstract: Down syndrome (DS) is the most frequent chromosomal abnormality that causes intellectual disability, resulting from the presence of an extra complete or segment of chromosome 21 (HSA21) (Tramutola et al., 2020; Lanzillotta et al., 2021). Every year, approximately 6000 children are born with DS and most of them do not have an autonomous life. Thanks to the advancement in medical care, DS individuals live long and often outlive their parents (Lott and Head, 2019). As a consequence, individuals with DS are now experiencing a high incidence of age-associated health problems, especially Alzheimer’s disease (AD) dementia (Lott and Head, 2019). In particular, by the age of 40 years, virtually all individuals with DS show AD neuropathology (Lott and Head, 2019). The link between AD and DS is thought to be mainly related to the triplication of the amyloid precursor gene (APP), which is encoded on HSA21. However, trisomy of HSA21 results in increased gene dosage for other genes in addition to APP, which may also be involved in AD development. These include superoxide dismutase 1, which is involved in redox metabolism; adenosine triphosphate (ATP)-binding cassette sub-family G member 1, which is involved in cholesterol metabolism; cystatin B, beta-secretase 2, and synaptojanin 1 involved in beta-amyloid (Aβ) processing and clearance; the dual-specificity tyrosine phosphorylation-regulated kinase-1A, which is involved in Tau phosphorylation; regulator of calcineurin, which is involved in mitochondrial dysfunction; S100B involved in inflammatory responses (Lott and Head, 2019).