中国神经再生研究(英文版) ›› 2022, Vol. 17 ›› Issue (5): 997-998.doi: 10.4103/1673-5374.324833

• 观点:神经损伤修复保护与再生 • 上一篇    下一篇

胶质细胞的代谢重编程是中枢神经系统轴突再生的新目标

  

  • 出版日期:2022-05-15 发布日期:2021-11-08

Metabolic reprogramming of glial cells as a new target for central nervous system axon regeneration

Erin L. Walden, Shuxin Li*   

  1. Shriners Hospitals Pediatric Research Center, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
  • Online:2022-05-15 Published:2021-11-08
  • Contact: Shuxin Li, MD, PhD, Shuxin.li@temple.edu.

摘要: Neural Regen Res:神经胶质细胞重编程为中枢神经系统轴突再生开辟新道路
胶质细胞具有很多重要的生理功能,包括维持体内平衡、支持和保护神经元、调节神经元活动和髓鞘形成。中枢神经系统损伤后,反应性胶质细胞的表型和活性发生改变,并促进瘢痕形成。胶质增生是中枢神经系统的一种防御反应,可减轻原发性损伤,修复受损组织,还具有多种积极作用,如延迟损伤进展。
来自美国天普大学的Shuxin Li团队认为,鉴于中枢神经系统环境与神经元再生的复杂性,将神经胶质细胞的代谢状态与中枢神经系统再生结合起来,并通过神经胶质重编程将神经胶质对再生的抑制转化为促进将异常有趣。确定由糖酵解代谢物介导的新型神经胶质-神经元相互作用并通过特定代谢物促进大量中枢神经系统轴突再生是是未来研究重点。由于糖酵解代谢物介导的中枢神经系统再生目前局限在哺乳动物中,因此进一步剖析基于神经胶质重编程的再生分子靶标并将其转化为临床将非常重要。除了已报道的糖酵解相关生物分子,如 L-乳酸和 L-2GH,其他结构相似的代谢物及其相关基因也可能成为中枢神经系统再生的目标。
文章在《中国神经再生研究(英文版)》杂志2022年 5月 5期发表。

Abstract: After central nervous system (CNS) injury, severed axons fail to regenerate and their disconnections to the original targets result in permanent functional deficits in patients (Mahar and Cavalli, 2018). Both the diminished intrinsic regenerative capacity of mature neurons and the inhibitory CNS milieu contribute to the regenerative failure following CNS injury. Glial cells have important physiological functions, including maintaining homeostasis, supporting and protecting neurons, regulating neuronal activities, and forming myelin (Gaudet and Fonken, 2018). In response to CNS injury, reactive glial cells shift their phenotype and activities and contribute to scar formation. Gliosis is a defense response of the CNS to diminish primary damage and to repair injured tissues and has numerous beneficial effects, such as preventing the spread of damage from injury site. Various glia present around the lesion, including astrocytes, may express multiple positive molecules that promote axon regrowth, such as laminins, syndecans, glypicans, and decorin. Accordingly, preventing scar formation after injury or removing chronic astrocytic scars failed to promote axon regeneration (Anderson et al., 2016). However, reactive glial cells and scar tissues ultimately produce detrimental effects by upregulating numerous molecules that suppress neuronal elongation and form potent barriers to axon regeneration. Shortly after CNS injury, chondroitin sulfate proteoglycans (CSPGs) are upregulated dramatically and form part of the extracellular matrix components. CSPGs remain around the lesion epicenter for at least months, form an inhibitory milieu around the lesion, and suppress regrowth of injured axons into and beyond the lesion area (Hara et al., 2017). Two transmembrane protein tyrosine phosphatases (LAR and PTP σ) are important for mediating inhibition by CSPGs.