Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (1): 24-30.doi: 10.3969/j.issn.1673-5374.2013.01.003
Previous Articles Next Articles
Zhixing Ma, Qingyu Li, Zhengyu Zhang, Yufang Zheng
Received:
2012-07-16
Revised:
2012-10-24
Online:
2013-01-05
Published:
2013-01-05
Contact:
Yufang Zheng, Ph.D., Associate professor, School of Life Sciences, Fudan University, Shanghai 200433, China,zhengyf@fudan.edu.cn.
About author:
Zhixing Ma★, Master.
Supported by:
This work was supported by the National Natural Science Foundation of China, No. 30800322; Shanghai Pujiang Program, No. 08PJ1401300; Shanghai Leading Academic Discipline Project, No. B111; Ministry of Education Research Fund for New Teachers in Doctoral Program of Higher Educational Institutes, No. 200802461050; National Basic Research Program of China (973 Program), No. 2011CB503703; Ministry of Education Start Fund to Returned Overseas Scholars; and ZhuoXue Program of Fudan University.
Zhixing Ma, Qingyu Li, Zhengyu Zhang, Yufang Zheng. A Disintegrin and Metalloprotease 10 in neuronal maturation and gliogenesis during cortex development[J]. Neural Regeneration Research, 2013, 8(1): 24-30.
[1] Bystron I, Blakemore C, Rakic P. Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci. 2008;9:110-122.http://www.ncbi.nlm.nih.gov/pubmed/18209730[2] Rakic P, Lombroso PJ. Development of the cerebral cortex: I. Forming the cortical structure. J Am Acad Child Adolesc Psychiatry. 1998;37:116-117.http://www.ncbi.nlm.nih.gov/pubmed/9444908[3] Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci. 2009;32:149-184.http://www.ncbi.nlm.nih.gov/pubmed/19555289[4] Freeman MR. Specification and morphogenesis of astrocytes. Science. 2010;330:774-778.http://www.ncbi.nlm.nih.gov/pubmed/21051628[5] Zhou ZD, Kumari U, Xiao ZC, et al. Notch as a molecular switch in neural stem cells. IUBMB Life. 2010;62:618-623.http://www.ncbi.nlm.nih.gov/pubmed/20681026[6] Yoon K, Gaiano N. Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci. 2005;8:709-715.http://www.ncbi.nlm.nih.gov/pubmed/15917835[7] Ramasamy SK, Lenka N. Notch exhibits ligand bias and maneuvers stage-specific steering of neural differentiation in embryonic stem cells. Mol Cell Biol. 2010;30:1946-1957.http://www.ncbi.nlm.nih.gov/pubmed/20154142[8] Ge W, Martinowich K, Wu X, et al. Notch signaling promotes astrogliogenesis via direct CSL-mediated glial gene activation. J Neurosci Res. 2002;69:848-860.http://www.ncbi.nlm.nih.gov/pubmed/12205678[9] Morrison SJ, Perez SE, Qiao Z, et al. Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell. 2000;101:499-510.http://www.ncbi.nlm.nih.gov/pubmed/10850492[10] Genoud S, Lappe-Siefke C, Goebbels S, et al. Notch1 control of oligodendrocyte differentiation in the spinal cord. J Cell Biol. 2002;158:709-718.http://www.ncbi.nlm.nih.gov/pubmed/12186854[11] Givogri MI, Schonmann V, Cole R, et al. Notch1 and Numb genes are inversely expressed as oligodendrocytes differentiate. Dev Neurosci. 2003;25:50-64.http://www.ncbi.nlm.nih.gov/pubmed/12876431[12] Zhang Y, Argaw AT, Gurfein BT, et al. Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination. Proc Natl Acad Sci U S A. 2009;106:19162-19167.http://www.ncbi.nlm.nih.gov/pubmed/19855010[13] Woodhoo A, Alonso MB, Droggiti A, et al. Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat Neurosci. 2009;12:839-847.http://www.ncbi.nlm.nih.gov/pubmed/19525946[14] van Tetering G, van Diest P, Verlaan I, et al. Metalloprotease ADAM10 is required for Notch1 site 2 cleavage. J Biol Chem. 2009;284:31018-31027.http://www.ncbi.nlm.nih.gov/pubmed/19726682[15] Gordon WR, Roy M, Vardar-Ulu D, et al. Structure of the Notch1-negative regulatory region: implications for normal activation and pathogenic signaling in T-ALL. Blood. 2009;113:4381-4390.http://www.ncbi.nlm.nih.gov/pubmed/19075186[16] Gordon WR, Vardar-Ulu D, L'Heureux S, et al. Effects of S1 cleavage on the structure, surface export, and signaling activity of human Notch1 and Notch2. PLoS One. 2009;4:e6613.http://www.ncbi.nlm.nih.gov/pubmed/19701457[17] Bozkulak EC, Weinmaster G. Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Mol Cell Biol. 2009;29:5679-5695.http://www.ncbi.nlm.nih.gov/pubmed/19704010[18] Brou C, Logeat F, Gupta N, et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell. 2000;5:207-216.http://www.ncbi.nlm.nih.gov/pubmed/10882063[19] Mumm JS, Schroeter EH, Saxena MT, et al. A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell. 2000;5:197-206.http://www.ncbi.nlm.nih.gov/pubmed/10882062[20] Shi W, Chen H, Sun J, et al. TACE is required for fetal murine cardiac development and modeling. Dev Biol. 2003;261:371-380.http://www.ncbi.nlm.nih.gov/pubmed/14499647[21] Hartmann D, de Strooper B, Serneels L, et al. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet. 2002;11:2615-2624.http://www.ncbi.nlm.nih.gov/pubmed/12354787[22] Jorissen E, Prox J, Bernreuther C, et al. The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. J Neurosci. 2010;30:4833-4844.http://www.ncbi.nlm.nih.gov/pubmed/20371803[23] Yang X, Klein R, Tian X, et al. Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev Biol. 2004;269:81-94.http://www.ncbi.nlm.nih.gov/pubmed/15081359[24] Aguirre A, Rubio ME, Gallo V. Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature. 2010;467:323-327.http://www.ncbi.nlm.nih.gov/pubmed/20844536[25] Kostyszyn B, Cowburn RF, Seiger A, Kjaeldgaard A, Sundstrom E. Distribution of presenilin 1 and 2 and their relation to Notch receptors and ligands in human embryonic/foetal central nervous system. Brain Res Dev Brain Res 2004, 151: 75-86.http://www.ncbi.nlm.nih.gov/pubmed/15246694[26] Cau E, Blader P. Notch activity in the nervous system: to switch or not switch? Neural Dev. 2009;4:36.http://www.ncbi.nlm.nih.gov/pubmed/19799767[27] Tio M, Toh J, Fang W, et al. Asymmetric cell division and Notch signaling specify dopaminergic neurons in Drosophila. PLoS One. 2011;6:e26879.http://www.ncbi.nlm.nih.gov/pubmed/22073214[28] Komine O, Nagaoka M, Hiraoka Y, et al. RBP-J promotes the maturation of neuronal progenitors. Dev Biol. 2011;354:44-54.http://www.ncbi.nlm.nih.gov/pubmed/21443869[29] Muraguchi T, Takegami Y, Ohtsuka T, et al. RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity. Nat Neurosci. 2007;10:838-845.http://www.ncbi.nlm.nih.gov/pubmed/17558399[30] Esteve P, Sandonis A, Cardozo M, et al. SFRPs act as negative modulators of ADAM10 to regulate retinal neurogenesis. Nat Neurosci. 2011;14:562-569.http://www.ncbi.nlm.nih.gov/pubmed/21478884[31] Doberstein K, Pfeilschifter J, Gutwein P. The transcription factor PAX2 regulates ADAM10 expression in renal cell carcinoma. Carcinogenesis. 2011;32:1713-1723.http://www.ncbi.nlm.nih.gov/pubmed/21880579[32] Lee SB, Doberstein K, Baumgarten P, et al. PAX2 regulates ADAM10 expression and mediates anchorage-independent cell growth of melanoma cells. PLoS One. 2011;6:e22312.http://www.ncbi.nlm.nih.gov/pubmed/21876729[33] Fahrenholz F, Tippmann F, Endres K. Retinoids as a perspective in treatment of Alzheimer's disease. Neurodegener Dis. 2010;7:190-192.http://www.ncbi.nlm.nih.gov/pubmed/20224284[34] De Pietri Tonelli D, Pulvers JN, Haffner C, et al. miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development. 2008;135:3911-3921.http://www.ncbi.nlm.nih.gov/pubmed/18997113 |
[1] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[2] | Qiang Gao, Aaron Leung, Yong-Hong Yang, Benson Wui-Man Lau, Qian Wang, Ling-Yi Liao, Yun-Juan Xie, Cheng-Qi He. Extremely low frequency electromagnetic fields promote cognitive function and hippocampal neurogenesis of rats with cerebral ischemia [J]. Neural Regeneration Research, 2021, 16(7): 1252-1257. |
[3] | Yi-An Zhan, Xin-Liang Qiu, Xu-Zhen Wang, Ning Zhao, Ke-Jian Qian. Reducing LncRNA-5657 expression inhibits the brain inflammatory reaction in septic rats [J]. Neural Regeneration Research, 2021, 16(7): 1288-1293. |
[4] | Min Wang, Juan-Juan Tang, Lin-Xiao Wang, Jun Yu, Li Zhang, Chen Qiao. Hydrogen sulfide enhances adult neurogenesis in a mouse model of Parkinson’s disease [J]. Neural Regeneration Research, 2021, 16(7): 1353-1358. |
[5] | Shinichi Kinoshita, Ryuta Koyama. Pro- and anti-epileptic roles of microglia [J]. Neural Regeneration Research, 2021, 16(7): 1369-1371. |
[6] | Dae Young Yoo, Hyo Young Jung, Woosuk Kim, Kyu Ri Hahn, Hyun Jung Kwon, Sung Min Nam, Jin Young Chung, Yeo Sung Yoon, Dae Won Kim, In Koo Hwang. Entacapone promotes hippocampal neurogenesis in mice [J]. Neural Regeneration Research, 2021, 16(6): 1005-1010. |
[7] | Marika Premoli, Maurizio Memo, Sara Anna Bonini. Ultrasonic vocalizations in mice: relevance for ethologic and neurodevelopmental disorders studies [J]. Neural Regeneration Research, 2021, 16(6): 1158-1167. |
[8] | Daniel J. Hellenbrand, Clayton L. Haldeman, Jae-Sung Lee, Angela G. Gableman, Elena K. Dai, Stephen D. Ortmann, Jerrod C. Gotchy, Kierra K. Miller, Adrianna M. Doucas, Nicole C. Nowak, William L. Murphy, Amgad S. Hanna. Functional recovery after peripheral nerve injury via sustained growth factor delivery from mineral-coated microparticles [J]. Neural Regeneration Research, 2021, 16(5): 871-877. |
[9] | Mariam Rizk, Justin Vu, Zhi Zhang. Impact of pediatric traumatic brain injury on hippocampal neurogenesis [J]. Neural Regeneration Research, 2021, 16(5): 926-933. |
[10] | Magdalini Tsintou, Kyriakos Dalamagkas, Tara L. Moore, Yogesh Rathi, Marek Kubicki, Douglas L. Rosene, Nikos Makris. The use of hydrogel-delivered extracellular vesicles in recovery of motor function in stroke: a testable experimental hypothesis for clinical translation including behavioral and neuroimaging assessment approaches [J]. Neural Regeneration Research, 2021, 16(4): 605-613. |
[11] | Gilad Levy, Boaz Barak. Postnatal therapeutic approaches in genetic neurodevelopmental disorders [J]. Neural Regeneration Research, 2021, 16(3): 414-422. |
[12] | Ijair R.C. dos Santos, Michelle Nerissa C. Dias, Walace Gomes-Leal. Microglial activation and adult neurogenesis after brain stroke [J]. Neural Regeneration Research, 2021, 16(3): 456-459. |
[13] | Chiara Di Resta, Giovanni Battista Pipitone, Paola Carrera, Maurizio Ferrari. Current scenario of the genetic testing for rare neurological disorders exploiting next generation sequencing [J]. Neural Regeneration Research, 2021, 16(3): 475-481. |
[14] | Filip Olegovich Fadeev, Farid Vagizovich Bashirov, Vahe Arshaluysovich Markosyan, Andrey Alexandrovich Izmailov, Tatyana Vyacheslavovna Povysheva, Mikhail Evgenyevich Sokolov, Maxim Sergeevich Kuznetsov, Anton Alexandrovich Eremeev, Ilnur Ildusovich Salafutdinov, Albert Anatolyevich Rizvanov, Hyun Joon Lee, Rustem Robertovich Islamov. Combination of epidural electrical stimulation with ex vivo triple gene therapy for spinal cord injury: a proof of principle study [J]. Neural Regeneration Research, 2021, 16(3): 550-560. |
[15] | Cong-Cong Huo, Ya Zheng, Wei-Wei Lu, Teng-Yu Zhang, Dai-Fa Wang, Dong-Sheng Xu, Zeng-Yong Li. Prospects for intelligent rehabilitation techniques to treat motor dysfunction [J]. Neural Regeneration Research, 2021, 16(2): 264-269. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||