Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (1): 39-48.doi: 10.3969/j.issn.1673-5374.2013.01.005
Previous Articles Next Articles
Xu Wang1, Yi Yang1, Mingyue Jia1, Chi Ma2, Mingyu Wang1, Lihe Che3, Yu Yang1, Jiang Wu1
Received:
2012-09-08
Revised:
2012-11-07
Online:
2013-01-05
Published:
2013-01-05
Contact:
Jiang Wu, M.D., Ph.D., Professor, Department of Neurology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China, sjnkwujiang@sina.com.cn. Yu Yang, M.D., Ph.D., Associate professor, Department of Neurology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China, yy197711@yahoo.com.cn.
About author:
Xu Wang☆, Studying for doctorate.
Supported by:
This study was supported by the National Natural Science Foundation of China, No. 30872721; the National Natural Science Foundation for the Youth, No. 30801211, 30800338; and the Scientific Research Foundation for New Teachers of High Institutes, No. 200801831073, 200801831072.
Xu Wang, Yi Yang, Mingyue Jia, Chi Ma, Mingyu Wang, Lihe Che, Yu Yang, Jiang Wu. The novel amyloid-beta peptide aptamer inhibits intracellular amyloid-beta peptide toxicity[J]. Neural Regeneration Research, 2013, 8(1): 39-48.
[1] Selkoe DJ. Toward a comprehensive theory for Alzheimer's disease. Hypothesis: Alzheimer's disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann N Y Acad Sci. 2000;924:17-25.http://onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.2000.tb05554.x/abstract;jsessionid=BC2B75B60ED3A7414C887B40AC6B9433.d01t01 [2] Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184-185.http://www.sciencemag.org/content/256/5054/184.long [3] Wirths O, Multhaup G, Czech C, et al. Intraneuronal Abeta accumulation precedes plaque formation in beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett. 2001;306(1-2):116-120.http://www.sciencedirect.com/science/article/pii/S0304394001018766 [4] LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer's disease. Nat Rev Neurosci. 2007;8(7):499-509.http://www.nature.com/nrn/journal/v8/n7/full/nrn2168.html [5] Gouras GK, Tsai J, Naslund J, et al. Intraneuronal Abeta42 accumulation in human brain. Am J Pathol. 2000;156(1):15-20.http://linkinghub.elsevier.com/retrieve/pii/S0002-9440(10)64700-1 [6] Gouras GK, Tampellini D, Takahashi RH, et al. Intraneuronal beta-amyloid accumulation and synapse pathology in Alzheimer's disease. Acta Neuropathol. 2010;119(5):523-541.http://www.springerlink.com/content/02067635t37890g1/ [7] Reitz C. Alzheimer's disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis. 2012;2012:369808.http://www.hindawi.com/journals/ijad/2012/369808/ [8] Yao J, Irwin RW, Zhao L, et al. Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A. 2009;106(34):14670-14675.http://www.pnas.org/cgi/pmidlookup?view=long&pmid=19667196 [9] Muller WE, Eckert A, Kurz C, et al. Mitochondrial dysfunction: common final pathway in brain aging and Alzheimer's disease--therapeutic aspects. Mol Neurobiol. 2010;41(2-3):159-171.http://www.springerlink.com/content/854811q43822tun7/ [10] Manczak M, Anekonda TS, Henson E, et al. Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet. 2006;15(9):1437-1449.http://hmg.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=16551656 [11] Caspersen C, Wang N, Yao J, et al. Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease. FASEB J. 2005;19(14):2040-2041.http://www.fasebj.org/cgi/pmidlookup?view=long&pmid=16210396 [12] Pagani L, Eckert A. Amyloid-Beta interaction with mitochondria. Int J Alzheimers Dis. 2011;2011:925050.http://www.hindawi.com/journals/ijad/2011/925050/ [13] Hansson Petersen CA, Alikhani N, Behbahani H, et al. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci U S A. 2008;105(35):13145-13150.http://www.pnas.org/cgi/pmidlookup?view=long&pmid=18757748 [14] Aleardi AM, Benard G, Augereau O, et al. Gradual alteration of mitochondrial structure and function by beta-amyloids: importance of membrane viscosity changes, energy deprivation, reactive oxygen species production, and cytochrome c release. J Bioenerg Biomembr. 2005;37(4):207-225.http://dx.doi.org/10.1007/s10863-005-6631-3 [15] Lustbader JW, Cirilli M, Lin C, et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease. Science. 2004;304(5669):448-452.http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=15087549 [16] Borger E, Aitken L, Du H, et al. Is Amyloid binding alcohol dehydrogenase a drug target for treating Alzheimer's disease? Curr Alzheimer Res. 2012. 2012 Jun 27. http://www.ncbi.nlm.nih.gov/pubmed/22742981?dopt=Citation [17] Yan SD, Stern DM. Mitochondrial dysfunction and Alzheimer's disease: role of amyloid-beta peptide alcohol dehydrogenase (ABAD). Int J Exp Pathol. 2005;86(3):161-171.http://onlinelibrary.wiley.com/resolve/openurl?genre=article&sid=nlm:pubmed&issn=0959-9673&date=2005&volume=86&issue=3&spage=161 [18] Yan Y, Liu Y, Sorci M, et al. Surface plasmon resonance and nuclear magnetic resonance studies of ABAD-Abeta interaction. Biochemistry. 2007;46(7):1724-1731.http://pubs.acs.org/doi/abs/10.1021/bi061314n [19] Takuma K, Yao J, Huang J, et al. ABAD enhances Abeta-induced cell stress via mitochondrial dysfunction. FASEB J. 2005;19(6):597-598.http://www.fasebj.org/cgi/pmidlookup?view=long&pmid=15665036 [20] Chen JX, Yan SD. Amyloid-beta-induced mitochondrial dysfunction. J Alzheimers Dis. 2007;12(2):177-184.http://iospress.metapress.com/openurl.asp?genre=article&issn=1387-2877&volume=12&issue=2&spage=177 [21] Yao J, Du H, Yan S, et al. Inhibition of amyloid-beta (Abeta) peptide-binding alcohol dehydrogenase-Abeta interaction reduces Abeta accumulation and improves mitochondrial function in a mouse model of Alzheimer's disease. J Neurosci. 2011;31(6):2313-2320.http://www.jneurosci.org/cgi/pmidlookup?view=long&pmid=21307267 [22] Yang X, Yang Y, Wu J, et al. Stable expression of a novel fusion peptide of thioredoxin-1 and ABAD-inhibiting peptide protects PC12 cells from intracellular amyloid-beta. J Mol Neurosci. 2007;33(2):180-188.http://www.springerlink.com/content/318p330679276373/ [23] Yang Y, Ren X, Schluesener HJ, et al. Aptamers: selection, modification and application to nervous system diseases. Curr Med Chem. 2011;18(27):4159-4168.http://www.benthamdirect.org/pages/content.php?CMC/2011/00000018/00000027/0007C.SGM [24] Song KM, Lee S, Ban C. Aptamers and their biological applications. Sensors (Basel). 2012;12(1):612-631.http://www.mdpi.com/1424-8220/12/1/612 [25] Li J, Tan S, Chen X, et al. Peptide aptamers with biological and therapeutic applications. Curr Med Chem. 2011;18(27):4215-4222.http://www.benthamdirect.org/pages/content.php?CMC/2011/00000018/00000027/0013C.SGM [26] Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787-795.http://dx.doi.org/10.1038/nature05292 [27] Johri A, Beal MF. Mitochondrial Dysfunction in Neurodegenerative Diseases. J Pharmacol Exp Ther. 2012.http://jpet.aspetjournals.org/cgi/pmidlookup?view=long&pmid=22700435 [28] Federico A, Cardaioli E, Da Pozzo P, et al. Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci. 2012. 2012 Jun 3. http://linkinghub.elsevier.com/retrieve/pii/S0022-510X(12)00258-4 [29] Reddy PH, Manczak M, Mao P, et al. Amyloid-beta and mitochondria in aging and Alzheimer's disease: implications for synaptic damage and cognitive decline. J Alzheimers Dis. 2010;20 Suppl 2:S499-512.http://iospress.metapress.com/content/5786wj087272j666/?p=2768f628e5de42edb94f21ff4c881028&pi=18 [30] Chen JX, Yan SS. Role of mitochondrial amyloid-beta in Alzheimer's disease. J Alzheimers Dis. 2010;20 Suppl 2:S569-578.http://iospress.metapress.com/content/e64037047q734q12/?p=302bc5ec736142ac8eace0b2253cf39b&pi=23 [31] Dragicevic N, Mamcarz M, Zhu Y, et al. Mitochondrial amyloid-beta levels are associated with the extent of mitochondrial dysfunction in different brain regions and the degree of cognitive impairment in Alzheimer's transgenic mice. J Alzheimers Dis. 2010;20 Suppl 2:S535-550.http://iospress.metapress.com/content/5742266w135767p2/?p=302bc5ec736142ac8eace0b2253cf39b&pi=21 [32] Piaceri I, Rinnoci V, Bagnoli S, et al. Mitochondria and Alzheimer's disease. J Neurol Sci. 2012. 2012 Jun 11. [Epub ahead of print]http://www.jns-journal.com/article/S0022-510X(12)00261-4/abstract [33] Marques AT, Fernandes PA, Ramos MJ. ABAD: a potential therapeutic target for Abeta-induced mitochondrial dysfunction in Alzheimer's disease. Mini Rev Med Chem. 2009;9(8):1002-1008.http://www.benthamdirect.org/pages/content.php?MRMC/2009/00000009/00000008/0011N.SGM [34] Lim YA, Grimm A, Giese M, et al. Inhibition of the mitochondrial enzyme ABAD restores the amyloid-beta-mediated deregulation of estradiol. PLoS One. 2011;6(12):e28887.http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0028887 [35] Grimm A, Lim YA, Mensah-Nyagan AG, et al. Alzheimer's disease, oestrogen and mitochondria: an ambiguous relationship. Mol Neurobiol. 2012;46(1):151-160.http://www.springerlink.com/content/c2133h43513853g2/ [36] Muirhead KE, Borger E, Aitken L, et al. The consequences of mitochondrial amyloid beta-peptide in Alzheimer's disease. Biochem J. 2010;426(3):255-270.http://www.biochemj.org/bj/426/0255/bj4260255.htm [37] Yao J, Taylor M, Davey F, et al. Interaction of amyloid binding alcohol dehydrogenase/Abeta mediates up-regulation of peroxiredoxin II in the brains of Alzheimer's disease patients and a transgenic Alzheimer's disease mouse model. Mol Cell Neurosci. 2007;35(2):377-382.http://linkinghub.elsevier.com/retrieve/pii/S1044-7431(07)00084-X [38] Ren Y, Xu HW, Davey F, et al. Endophilin I expression is increased in the brains of Alzheimer disease patients. J Biol Chem. 2008;283(9):5685-5691.http://www.jbc.org/content/283/9/5685.long [39] Wang RE, Wu H, Niu Y, et al. Improving the stability of aptamers by chemical modification. Curr Med Chem. 2011;18(27):4126-4138.http://www.benthamdirect.org/pages/content.php?CPB/2012/00000013/00000010/0009G.SGM [40] Soontornworajit B, Wang Y. Nucleic acid aptamers for clinical diagnosis: cell detection and molecular imaging. Anal Bioanal Chem. 2011;399(4):1591-1599.http://www.benthamdirect.org/pages/content.php?CMC/2011/00000018/00000027/0004C.SGM [41] Liu J, You M, Pu Y, et al. Recent developments in protein and cell-targeted aptamer selection and applications. Curr Med Chem. 2011;18(27):4117-4125.http://dx.doi.org/10.1007/s00216-010-4559-x [42] Kang KN, Lee YS. RNA Aptamers: A Review of Recent Trends and Applications. Adv Biochem Eng Biotechnol. in press.http://www.benthamdirect.org/pages/content.php?CMC/2011/00000018/00000027/0003C.SGM [43] Bompiani KM, Woodruff RS, Becker RC, et al. Antidote control of aptamer therapeutics: the road to a safer class of drug agents. Curr Pharm Biotechnol. 2012;13(10):1924-1934.http://www.benthamdirect.org/pages/content.php?CPB/2012/00000013/00000010/0009G.SGM [44] Zhao BM, Hoffmann FM. Inhibition of transforming growth factor-beta1-induced signaling and epithelial-to-mesenchymal transition by the Smad-binding peptide aptamer Trx-SARA. Mol Biol Cell. 2006;17(9):3819-3831.http://www.molbiolcell.org/content/17/9/3819.long [45] Brown CJ, Dastidar SG, See HY, et al. Rational design and biophysical characterization of thioredoxin-based aptamers: insights into peptide grafting. J Mol Biol. 2010;395(4):871-883.http://www.sciencedirect.com/science/article/pii/S002228360901328X [46] Borghouts C, Kunz C, Delis N, et al. Monomeric recombinant peptide aptamers are required for efficient intracellular uptake and target inhibition. Mol Cancer Res. 2008;6(2):267-281.http://mcr.aacrjournals.org/content/6/2/267.long [47] Wang X, Wu J, Yang Y, et al. Cloning and expression of fusion gene of amyloid beta binding alcohol dehydrogenase decoy peptide aptamer (TRX1-ABAD-DP-TRX2). Zhonghua Yi Xue Za Zhi. 2012;92(1):50-54.http://d.wanfangdata.com.cn/periodical_zhyx201201015.aspx [48] Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463-5467.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC431765/ [49] Reed SE, Staley EM, Mayginnes JP, et al. Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors. J Virol Methods. 2006;138(1-2):85-98.http://linkinghub.elsevier.com/retrieve/pii/S0166-0934(06)00277-1 |
[1] | Isaac G. Onyango, James P. Bennett, Jr, Gorazd B. Stokin. Regulation of neuronal bioenergetics as a therapeutic strategy in neurodegenerative diseases [J]. Neural Regeneration Research, 2021, 16(8): 1467-1482. |
[2] | Shi-Qin Lv, Wutian Wu. ISP and PAP4 peptides promote motor functional recovery after peripheral nerve injury [J]. Neural Regeneration Research, 2021, 16(8): 1598-1605. |
[3] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[4] | Ling-Yu Zhang, Qian-Qian Jin, Christian Hölscher, Lin Li. Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist DA-CH5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat Parkinson model [J]. Neural Regeneration Research, 2021, 16(8): 1660-1670. |
[5] | Meng-Shi Yang, Xiao-Jian Xu, Bin Zhang, Fei Niu, Bai-Yun Liu. Comparative transcriptomic analysis of rat versus mouse cerebral cortex after traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(7): 1235-1243. |
[6] | Dulce Parra-Villamar, Liliana Blancas-Espinoza, Elisa Garcia-Vences, Juan Herrera-García, Adrian Flores-Romero, Alberto Toscano-Zapien, Jonathan Vilchis Villa, Rodríguez Barrera-Roxana, Soria Zavala Karla, Antonio Ibarra, Raúl Silva-García. Neuroprotective effect of immunomodulatory peptides in rats with traumatic spinal cord injury [J]. Neural Regeneration Research, 2021, 16(7): 1273-1280. |
[7] | Sofia Ferreira, Ana F. Raimundo, Regina Menezes, Ivo C. Martins. Islet amyloid polypeptide & amyloid beta peptide roles in Alzheimer’s disease: two triggers, one disease [J]. Neural Regeneration Research, 2021, 16(6): 1127-1130. |
[8] | Ming-Yu Shi, Cheng-Cheng Ma, Fang-Fang Chen, Xiao-Yu Zhou, Xue Li, Chuan-Xi Tang, Lin Zhang, Dian-Shuai Gao. Possible role of glial cell line-derived neurotrophic factor for predicting cognitive impairment in Parkinson’s disease: a case-control study [J]. Neural Regeneration Research, 2021, 16(5): 885-892. |
[9] | Mariam Rizk, Justin Vu, Zhi Zhang. Impact of pediatric traumatic brain injury on hippocampal neurogenesis [J]. Neural Regeneration Research, 2021, 16(5): 926-933. |
[10] | Magdalini Tsintou, Kyriakos Dalamagkas, Tara L. Moore, Yogesh Rathi, Marek Kubicki, Douglas L. Rosene, Nikos Makris. The use of hydrogel-delivered extracellular vesicles in recovery of motor function in stroke: a testable experimental hypothesis for clinical translation including behavioral and neuroimaging assessment approaches [J]. Neural Regeneration Research, 2021, 16(4): 605-613. |
[11] | Takao Ishikawa. Saccharomyces cerevisiae in neuroscience: how unicellular organism helps to better understand prion protein? [J]. Neural Regeneration Research, 2021, 16(3): 489-495. |
[12] | Wang-Xia Wang, Paresh Prajapati, Hemendra J. Vekaria, Malinda Spry, Amber L. Cloud, Patrick G. Sullivan, Joe E. Springer. Temporal changes in inflammatory mitochondria-enriched microRNAs following traumatic brain injury and effects of miR-146a nanoparticle delivery [J]. Neural Regeneration Research, 2021, 16(3): 514-522. |
[13] | Filip Olegovich Fadeev, Farid Vagizovich Bashirov, Vahe Arshaluysovich Markosyan, Andrey Alexandrovich Izmailov, Tatyana Vyacheslavovna Povysheva, Mikhail Evgenyevich Sokolov, Maxim Sergeevich Kuznetsov, Anton Alexandrovich Eremeev, Ilnur Ildusovich Salafutdinov, Albert Anatolyevich Rizvanov, Hyun Joon Lee, Rustem Robertovich Islamov. Combination of epidural electrical stimulation with ex vivo triple gene therapy for spinal cord injury: a proof of principle study [J]. Neural Regeneration Research, 2021, 16(3): 550-560. |
[14] | Rustem R. Islamov, Farid V. Bashirov, Mikhail E. Sokolov, Andrei A. Izmailov, Filip O. Fadeev, Vage A. Markosyan, Maria A. Davleeva, Olga V. Zubkova, Maxim M. Smarov, Denis Yu. Logunov, Boris S. Naroditskyi, Ilnur I. Salafutdinov, Albert A. Rizvanov, Ramil G. Turaev. Gene-modified leucoconcentrate for personalized ex vivo gene therapy in a mini pig model of moderate spinal cord injury [J]. Neural Regeneration Research, 2021, 16(2): 357-361. |
[15] | Joseph A. Shehadi, Steven M. Elzein, Paul Beery, M. Chance Spalding, Michelle Pershing. Combined administration of platelet rich plasma and autologous bone marrow aspirate concentrate for spinal cord injury: a descriptive case series [J]. Neural Regeneration Research, 2021, 16(2): 362-366. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||