Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (3): 233-243.doi: 10.3969/j.issn.1673-5374.2013.03.005
Previous Articles Next Articles
Junming Tan1, Jiangang Shi2, Guodong Shi2, Yanling Liu3, Xiaohong Liu3, Chaoyang Wang1, Dechun Chen1, Shunming Xing1, Lianbing Shen1, Lianshun Jia2, Xiaojian Ye2, Hailong He2, Jiashun Li2
Received:
2012-07-28
Revised:
2012-10-10
Online:
2013-01-25
Published:
2013-01-25
Contact:
Jiangang Shi, M.D., Associate professor, Chief physician, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China, tanjunm@sina.com.
About author:
Junming Tan☆, M.D., Associate chief physician, Associate professor, Master’s supervisor.
Supported by:
This study was financially supported by grants from the Medical Scientific Fund and Intensive Research of Nanjing Military Area Command of Chinese PLA, No. Nan 2007-13 and Nan 08Z003; and the Medical Scientific Fund and Research of Chinese PLA during the 12th Five-Year Plan Period, No. CWS11J260.
Junming Tan, Jiangang Shi, Guodong Shi, Yanling Liu, Xiaohong Liu, Chaoyang Wang, Dechun Chen, Shunming Xing, Lianbing Shen, Lianshun Jia, Xiaojian Ye, Hailong He, Jiashun Li. Changes in compressed neurons from dogs with acute and severe cauda equina constrictions following intrathecal injection of brain-derived neurotrophic factor-conjugated polymer nanoparticles[J]. Neural Regeneration Research, 2013, 8(3): 233-243.
[1] Hasue M. Pain and the nerve root. An interdisciplinary approach. Spine (Phila Pa 1976). 1993;18(14):2053-2058.[2] Obata K, Noguchi K. BDNF in sensory neurons and chronic pain. Neurosci Res. 2006;55(1):1-10.[3] Liu Y, Kim D, Himes BT, et al. Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J Neurosci. 1999;19(11):4370-4387.[4] Liu Y, Himes BT, Murray M, et al. Grafts of BDNF- producing fibroblasts rescue axotomized rubrospinal neurons and prevent their atrophy. Exp Neurol. 2002;178(2):150-164. [5] Fraser S, Roberts L, Murphy E. Cauda equina syndrome: a literature review of its definition and clinical presentation. Arch Phys Med Rehabil. 2009;90(11):1964-1968.[6] Marsala J, Sulla I, Jalc P, et al. Multiple protracted cauda equina constrictions cause deep derangement in the lumbosacral spinal cord circuitry in the dog. Neurosci Lett. 1995;193(2):97-100.[7] Orendácová J, Cízková D, Kafka J, et al. Cauda equina syndrome. Prog Neurobiol. 2001;64(6):613-637.[8] Orendácová J, Marsala M, Cízková D, et al. Fos protein expression in sacral spinal cord in relation to early phase of cauda equina syndrome in dogs. Cell Mol Neurobiol. 2001;21(4):413-419.[9] Kasahara K, Nakagawa T, Kubota T. Neuronal loss and expression of neurotrophic factors in a model of rat chronic compressive spinal cord injury. Spine (Phila Pa 1976). 2006;31(18):2059-2066.[10] van Gelderen C. Ein orthotisches (lordotisches) kaudasyndrom. Acta Psychiat Scand. 1948;23(1-2):57-68.[11] Verbiest H. Further experiences on the pathological influence of a developmental narrowness of the bony lumbar vertebral canal. J Bone Joint Surg Br. 1955; 37-B(4):576-583.[12] Brish A, Lerner MA, Braham J. Intermittent claudication from compression of cauda equina by a narrowed spinal canal. J Neurosurg. 1964;21:207-211.[13] Graveleau J, Guiot G. Congenital narowness of the lumbar spinal canal and sensitivo-motor intermittent claudication syndrome of the cauda equina. Presse Med. 1964;72: 3344-3348.[14] Vacca VM Jr. Cauda equina syndrome. Nursing. 2012; 42(5):72.[15] Vanelderen P, Rouwette T, Kozicz T, et al. The role of brain-derived neurotrophic factor in different animal models of neuropathic pain. Eur J Pain. 2010;14(5): 473.e1-9.[16] Delamarter RB, Bohlman HH, Bodner D, et al. Urologic function after experimental cauda equina compression. Cystometrograms versus cortical-evoked potentials. Spine (Phila Pa 1976). 1990;15(9):864-870.[17] Porter RW, Ward D. Cauda equina dysfunction. The significance of two-level pathology. Spine (Phila Pa 1976). 1992;17(1):9-15.[18] Olmarker K, Holm S, Rydevik B. Importance of compression onset rate for the degree of impairment of impulse propagation in experimental compression injury of the porcine cauda equina. Spine (Phila Pa 1976). 1990;15: 416-419.[19] Ooi Y, Mita F, Satoh Y. Myeloscopic study on lumbar spinal canal stenosis with special reference to intermittent claudication. Spine (Phila Pa 1976). 1990;15(6):544-549.[20] Mao GP, Konno S, Arai I, et al. Chronic double-level cauda equina compression. An experimental study on the dog cauda equina with analyses of nerve conduction velocity. Spine (Phila Pa 1976). 1998;23(15):1641-1644.[21] Konno S, Yabuki S, Sato K, et al. A model for acute, chronic, and delayed graded compression of the dog cauda equina. Presentation of the gross, microscopic, and vascular anatomy of the dog cauda equina and accuracy in pressure transmission of the compression model. Spine (Phila Pa 1976). 1995;20:2758-2764.[22] Sato K, Konno S, Yabuki S, et al. A model for acute, chronic, and delayed graded compression of the dog cauda equina. Neurophysiologic and histologic changes induced by acute, graded compression. Spine (Phila Pa 1976). 1995;20(22):2386-2391.[23] Sato K, Kikuchi S. Clinical analysis of two-level compression of the cauda equina and the nerve roots in lumbar spinal canal stenosis. Spine (Phila Pa 1976). 1997; 22(16):1898-1903.[24] Marsala J, Kafka J, Lukácová N, et al. Cauda equina syndrome and nitric oxide synthase immunoreactivity in the spinal cord of the dog. Physiol Res. 2003;52(4):481-496.[25] Schönström N, Bolender NF, Spengler DM, et al. Pressure changes within the cauda equina following constriction of the dural sac. An in vitro experimental study. Spine (Phila Pa 1976). 1984;9(6):604-607.[26] Schonstrom NS, Bolender NF, Spengler DM. The pathomorphology of spinal stenosis as seen on CT scans of the lumbar spine. Spine (Phila Pa 1976). 1985;10(9): 806-811.[27] Groves MJ, Christopherson T, Giometto B, et al. Axotomy-induced apoptosis in adult rat primary sensory neurons. J Neurocytol. 1997;26(9):615-624. [28] Vestergaard S, Tandrup T, Jakobsen J. Effect of permanent axotomy on number and volume of dorsal root ganglion cell bodies. J Comp Neurol. 1997;388(2):307-312.[29] Schmalbruch H. Motoneuron death after sciatic nerve section in newborn rats. J Comp Neurol. 1984;224(2): 252-258.[30] Kobayashi S, Yoshizawa H, Yamada S. Pathology of lumbar nerve root compression. Part 2: morphological and immunohistochemical changes of dorsal root ganglion. J Orthop Res. 2004;22(1):180-188.[31] Nathaniel EJ, Nathaniel DR. Electron microscopic studies of spinal ganglion cells following crushing of dorsal roots in adult rat. J Ultrastruct Res. 1973;45(3):168-182.[32] McCall J, Weidner N, Blesch A. Neurotrophic factors in combinatorial approaches for spinal cord regeneration. Cell Tissue Res. 2012;349(1):27-37. [33] Matsuoka Y, Yang J. Selective inhibition of extracellular signal-regulated kinases 1/2 blocks nerve growth factor to brain-derived neurotrophic factor signaling and suppresses the development of and reverses already established pain behavior in rats. Neuroscience. 2012; 206:224-236.[34] Lin YT, Ro LS, Wang HL, et al. Up-regulation of dorsal root ganglia BDNF and trkB receptor in inflammatory pain: an in vivo and in vitro study. J Neuroinflammation. 2011;8:126.[35] Tonra JR, Curtis R, Wong V, et al. Axotomy upregulates the anterograde transport and expression of brain-derived neurotrophic factor by sensory neurons. J Neurosci. 1998; 18(11):4374-4383.[36] Bregman BS. Spinal cord transplants permit the growth of serotonergic axons across the site of neonatal spinal cord transection. Brain Res. 1987;431(2):265-279.[37] Nakamura M, Bregman BS. Differences in neurotrophic factor gene expression profiles between neonate and adult rat spinal cord after injury. Exp Neurol. 2001;169(2): 407-415.[38] Xu K, Uchida K, Nakajima H, et al. Targeted retrograde transfection of adenovirus vector carrying brain-derived neurotrophic factor gene prevents loss of mouse (twy/twy) anterior horn neurons in vivo sustaining mechanical compression. Spine (Phila Pa 1976). 2006;31(17): 1867-1874.[39] Kishino A, Nakayama C. Enhancement of BDNF and activated-ERK immunoreactivity in spinal motor neurons after peripheral administration of BDNF. Brain Res. 2003; 964(1):56-66.[40] Blits B, Boer GJ, Verhaagen J. Pharmacological, cell, and gene therapy strategies to promote spinal cord regeneration. Cell Transplant. 2002;11(6):593-613. [41] Novikova LN, Novikov LN, Kellerth JO. Survival effects of BDNF and NT-3 on axotomized rubrospinal neurons depend on the temporal pattern of neurotrophin administration. Eur J Neurosci. 2000;12(2):776-780. [42] Acheson A, Conover JC, Fandl JP, et al. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature.1995;374(6521):450-453.[43] Tong JX, Eichler ME, Rich KM. Intracellular calcium levels influence apoptosis in mature sensory neurons after trophic factor deprivation. Exp Neurol. 1996;138(1):45-52.[44] Liu M, Kang ND, Yu EH. Changs of expression of c-fos gene and BDNF in neocortex induced by audiogenic kindling. Shenjing Jiepou Xue Zazhi. 2002;18(3):243-246.[45] Frisén J, Verge VM, Cullheim S, et al. Increased levels of trkB mRNA and trkB protein-like immunoreactivity in the injured rat and cat spinal cord. Proc Natl Acad Sci U S A. 1992;89(23):11282-11286.[46] Uchida K, Baba H, Maezawa Y, et al. Histological investigation of spinal cord lesions in the spinal hyperostotic mouse (twy/twy): morphological changes in anterior horn cells and immunoreactivity to neurotropic factors. J Neurol. 1998;245(12):781-793.[47] Uchida K, Baba H, Maezawa Y, et al. Increased expression of neurotrophins and their receptors in the mechanically compressed spinal cord of the spinal hyperostotic mouse (twy/twy). Acta Neuropathol. 2003; 106(1):29-36.[48] Kwon BK, Fisher CG, Dvorak MF, et al. Strategies to promote neural repair and regeneration after spinal cord injury. Spine (Phila Pa 1976). 2005;30(17 Suppl):S3-13.[49] The Ministry of Science and Technology of the People s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30.[50] Tan JM, Shi JG, Shi GD, et al. Influence on dorsal root ganglion after acute and severe cauda equina constrictions and intrathecal injection of brain-derived neurotrophic factor in experimental dogs. Jizhu Waike Zazhi. 2009;7(4):201-204.[51] Yaksh TL, Rathbun ML, Dragani JC, et al. Kinetic and safety studies on intrathecally infused recombinant- methionyl human brain-derived neurotrophic factor in dogs. Fundam Appl Toxicol. 1997;38(1):89-100.[52] Song YM, Yang Z, Lei J. Experimental study on effect of anlsodamine for traction injury of spinal cord in rabbit. Zhongguo Jizhu Jisui Zahzi. 1999;9(4):208-211. |
[1] | Liu-Lin Xiong, Jie Chen, Ruo-Lan Du, Jia Liu, Yan-Jun Chen, Mohammed Al Hawwas, Xin-Fu Zhou, Ting-Hua Wang, Si-Jin Yang, Xue Bai. Brain-derived neurotrophic factor and its related enzymes and receptors play important roles after hypoxic-ischemic brain damage [J]. Neural Regeneration Research, 2021, 16(8): 1453-1459. |
[2] | Sara Saffari, Tiam M. Saffari, Dietmar J. O. Ulrich, Steven E. R. Hovius, Alexander Y. Shin. The interaction of stem cells and vascularity in peripheral nerve regeneration [J]. Neural Regeneration Research, 2021, 16(8): 1510-1517. |
[3] | Shu Wang, Miao Gu, Cheng-Cheng Luan, Yu Wang, Xiaosong Gu, Jiang-Hong He. Biocompatibility and biosafety of butterfly wings for the clinical use of tissue-engineered nerve grafts [J]. Neural Regeneration Research, 2021, 16(8): 1606-1612. |
[4] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[5] | Dae Young Yoo, Hyo Young Jung, Woosuk Kim, Kyu Ri Hahn, Hyun Jung Kwon, Sung Min Nam, Jin Young Chung, Yeo Sung Yoon, Dae Won Kim, In Koo Hwang. Entacapone promotes hippocampal neurogenesis in mice [J]. Neural Regeneration Research, 2021, 16(6): 1005-1010. |
[6] | Lixia Li, Yizhou Xu, Xianghai Wang, Jingmin Liu, Xiaofang Hu, Dandan Tan, Zhenlin Li, Jiasong Guo. Ascorbic acid accelerates Wallerian degeneration after peripheral nerve injury [J]. Neural Regeneration Research, 2021, 16(6): 1078-1085. |
[7] | Xiao-Qing Cheng, Wen-Jing Xu, Xiao Ding, Gong-Hai Han, Shuai Wei, Ping Liu, Hao-Ye Meng, Ai-Jia Shang, Yu Wang, Ai-Yuan Wang. Bioinformatic analysis of cytokine expression in the proximal and distal nerve stumps after peripheral nerve injury [J]. Neural Regeneration Research, 2021, 16(5): 878-884. |
[8] | Mariam Rizk, Justin Vu, Zhi Zhang. Impact of pediatric traumatic brain injury on hippocampal neurogenesis [J]. Neural Regeneration Research, 2021, 16(5): 926-933. |
[9] | Magdalini Tsintou, Kyriakos Dalamagkas, Tara L. Moore, Yogesh Rathi, Marek Kubicki, Douglas L. Rosene, Nikos Makris. The use of hydrogel-delivered extracellular vesicles in recovery of motor function in stroke: a testable experimental hypothesis for clinical translation including behavioral and neuroimaging assessment approaches [J]. Neural Regeneration Research, 2021, 16(4): 605-613. |
[10] | Robert B. Shultz, Yinghui Zhong. Hydrogel-based local drug delivery strategies for spinal cord repair [J]. Neural Regeneration Research, 2021, 16(2): 247-253. |
[11] | Joseph A. Shehadi, Steven M. Elzein, Paul Beery, M. Chance Spalding, Michelle Pershing. Combined administration of platelet rich plasma and autologous bone marrow aspirate concentrate for spinal cord injury: a descriptive case series [J]. Neural Regeneration Research, 2021, 16(2): 362-366. |
[12] | Jing Wang, Ya-Qiong Zhu, Yu Wang, Hong-Guang Xu, Wen-Jing Xu, Yue-Xiang Wang, Xiao-Qing Cheng, Qi Quan, Yong-Qiang Hu, Chang-Feng Lu, Yan-Xu Zhao, Wen Jiang, Chen Liu, Liang Xiao, Wei Lu, Chen Zhu, Ai-Yuan Wang . A novel tissue engineered nerve graft constructed with autologous vein and nerve microtissue repairs a long-segment sciatic nerve defect [J]. Neural Regeneration Research, 2021, 16(1): 143-149. |
[13] | Jin-Hui Xu, Xu-Zhen Qin, Hao-Nan Zhang, Yan-Xia Ma, Shi-Bin Qi, Hong-Cheng Zhang, Jin-Jin Ma, Xin-Ya Fu, Ji-Le Xie, Saijilafu. Deletion of Krüppel-like factor-4 promotes axonal regeneration in mammals [J]. Neural Regeneration Research, 2021, 16(1): 166-171. |
[14] | Michele Fornaro, Alessia Giovannelli, Angelica Foggetti, Luisa Muratori, Stefano Geuna, Giorgia Novajra, Isabelle Perroteau . Role of neurotrophic factors in enhancing linear axonal growth of ganglionic sensory neurons in vitro [J]. Neural Regeneration Research, 2020, 15(9): 1732-1739. |
[15] | Ke-Wei Yu, Chuan-Jie Wang, Yi Wu, Yu-Yang Wang , Nian-Hong Wang , Shen-Yi Kuang , Gang Liu , Hong-Yu Xie , Cong-Yu Jiang , Jun-Fa Wu. An enriched environment increases the expression of fibronectin type III domain-containing protein 5 and brain-derived neurotrophic factor in the cerebral cortex of the ischemic mouse brain [J]. Neural Regeneration Research, 2020, 15(9): 1671-1677. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||