Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (6): 485-495.doi: 10.3969/j.issn.1673-5374.2013.06.001
Sibel Konyalioglu1, Guliz Armagan1, Ayfer Yalcin1, Cigdem Atalayin2, Taner Dagci3, 4
Received:
2012-09-13
Revised:
2013-01-05
Online:
2013-02-25
Published:
2013-02-25
Contact:
Sibel Konyalioglu, Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova-Izmir 35100, Turkey, sibel.konyalioglu@ ege.edu.tr.
About author:
Sibel Konyalioglu, Associate professor.
Supported by:
This study was funded by the Research Fund of Ege University, Project No. 05/ECZ/020.
Sibel Konyalioglu, Guliz Armagan, Ayfer Yalcin, Cigdem Atalayin, Taner Dagci. Effects of resveratrol on hydrogen peroxide-induced oxidative stress in embryonic neural stem cells[J]. Neural Regeneration Research, 2013, 8(6): 485-495.
[1] Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993;262(5134): 689-695. [2] Dringen R. Metabolism and functions of glutathione in brain. Prog Neurobiol. 2000;62:649-471.[3] Lafon-Cazal M, Culcasi M, Gaven F, et al. Nitric oxide, superoxide and peroxynitrite: putative mediators of NMDA-induced cell death in cerebellar granule cells. Neuropharmacology. 1993;32(11):1259-1266. [4] Dickens MG, Franz KJ. A prochelator activated by hydrogen peroxide prevents metal-induced amyloid-aggregation. Chem Biochem. 2010;11(1):59-62. [5] Yamato M, Kudo W, Shiba T, et al. Determination of ROS associated with the degeneration of dopaminergic neurons during dopamine metabolism. Free Radic Res. 2010;44(3):249-257. [6] Fernández-Ferreiro A, Gil-Longo J.Vascular pro-oxidant effects related to the autoxidation of dopamine. Free Radic Res. 2009;43(3):295-303. [7] Arthur PG, Lim SC, Meloni BP, et al. The protective effect of hypoxic preconditioning on cortical neuronal cultures is associated with increases in the activity of several antioxidant enzymes. Brain Res. 2004;1017(1-2):146-154. [8] Floyd RA, Carney JM. Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol. 1992; Suppl:S22-27. [9] Gutteridge JM. Hydroxyl radicals, iron, oxidative stress, and neurodegeneration. Ann N Y Acad Sci. 1994;738: 201-213. [10] Malins DC, Polissar NL, Gunselman SJ. Progression of human breast cancers to the metastatic state is linked to hydroxyl radical-induced DNA damage. Proc Natl Acad Sci U S A. 1996;93(6):2557-2563. [11] Chen X, Zhang Q, Cheng Q, et al. Protective effect of salidroside against H2O2-induced cell apoptosis in primary culture of rat hippocampal neurons. Mol Cell Biochem. 2009;332(1-2):85-93. [12] Silani V, Corbo M. Cell-replacement therapy with stem cells in neurodegenerative diseases. Curr Neurovasc Res. 2004;1(3):283-289. [13] Kimura H, Yoshikawa M, Matsuda R, et al. Transplantation of embryonic stem cell-derived neural stem cells for spinal cord injury in adult mice. Neurol Res. 2005;27(8):812-829. [14] Kerr DA, Lladó J, Shamblott MJ, et al. Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury. J Neurosci. 2003;23 (12): 5131-5140.[15] Klein SM, Behrstock S, McHugh J, et al. GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther. 2005;16(4):509-521. [16] Lee J, Ryu H, Kowall NW. Differential regulation of neuronal and inducible nitric oxide synthase (NOS) in the spinal cord of mutant SOD1 (G93A) ALS mice. Biochem Biophys Res Commun. 2009;387(1):202-206. [17] Bacigaluppi M, Pluchino S, Peruzzotti-Jametti L, et al. Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain. 2009;132(Pt 8):2239-2251.[18] Gescher AJ, Steward WP. Relationship between mechanisms, bioavailibility, and preclinical chemopreventive efficacy of resveratrol: A conundrum. Cancer Epidemiol Biomarkers Prev. 2003;12(10):953-957. [19] Wenzel E, Somaza V. Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res. 2004;49(5):472-481. [20] Delmas D, Lançon A, Colin D, et al. Resveratrol as a chemopreventive agent: a promising molecule for fighting cancer. Curr Drug Targets. 2006;7(4):423-442. [21] Das S, Fraga CG, Das DK. Cardioprotective effect of resveratrol via HO-1 expression involves p38 map kinase and PI-3-kinase signaling, but does not involve NFkappaB. Free Radic Res. 2006;40(10):1066-1075. [22] Chanvitayapongs S, Draczynska-Lusiak B, Sun AY. Amelioration of oxidative stress by antioxidants and resveratrol in PC12 cells. Neuroreport. 1997;8(6): 1499-1502.[23] Tredici G, Miloso M, Nicolini G, et al. Resveratrol, map kinases and neuronal cells: might wine be a neuroprotectant? Drugs Exp Clin Res. 1999;25(2-3): 99-103. [24] Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer's disease amyloid-beta peptides. J Biol Chem. 2005;280(45):37377-37382. [25] Quincozes-Santos A, Andreazza AC, Nardin P, et al. Resveratrol attenuates oxidative-induced DNA damage in C6 Glioma cells. Neurotoxicology. 2007;28(4):886-891. [26] Mancuso C, Bates TE, Butterfield DA, et al. Natural antioxidants in Alzheimer's disease. Expert Opin Investig Drugs. 2007;16(12):1921-1931. [27] Donfack HJ, Kengap RT, Ngameni B, et al. Ficus cordata thunb (moraceae) is a potential source of some hepatoprotective and antioxidant compounds. Pharmacologia. 2011;2 (5):137-145.[28] Ozyurt D, Demirata B, Apak R. Determination of total antioxidant capacity by a new spectrophotometric method based on Ce(IV) reducing capacity measurement. Talanta. 2007;71(3):1155-1165. [29] López M, Mart??nez F, Del Valle C, et al. Study of phenolic compounds as natural antioxidants by a fluorescence method. Talanta. 2003;60(2-3):609-616.[30] Chen AS, Taguchi T, Sakai K, et al. Antioxidant activities of chitobiose and chitotriose. Biol Pharm Bull. 2003;26(9): 1326-1330. [31] Han SS, Kang DY, Mujtaba T, et al. Grafted lineage- restricted precursors differentiate exclusively into neurons in the adult spinal cord. Exp Neurol. 2003;177(2):360-375. [32] Lepore AC, Fischer I. Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord. Exp Neurol. 2005;194(1): 230-242. [33] Lepore AC, Han SS, Tyler-Polsz CJ, et al. Differential fate of multipotent and lineage-restricted neural precursors following transplantation into the adult CNS. Neuron Glia Biol. 2004;1(2):113-126. [34] Bastianetto S, Zheng WH, Quirion R. Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide-related toxicity in cultured hippocampal neurons. Br J Pharmacol. 2000;131(4): 711-720. [35] Koh JY, Choi DW. Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods. 1987; 20(1):83-90.[36] Kendig DM, Tarloff JB. Inactivation of lactate dehydrogenase by several chemicals: implications for in vitro toxicology studies. Toxicol In Vitro. 2007;21(1): 125-132. [37] Aebi H. Catalase in vitro. Methods Enzymol. 1984;105: 121-126.[38] Rikans LE, Hornbrook KR. Lipid peroxidation, antioxidant protection and aging. Biochim Biophys Acta. 1997;1362: 116-127. [39] El-Far MA, Bakr MA, Farahat SE, et al. Glutathione peroxidase activity in patients with renal disorders. Clin Exp Nephrol. 2005;9(2):127-131. [40] Hamada Y, Ikata T, Katoh S, et al. Roles of nitric oxide in compression injury of rat spinal cord. Free Rad Biol Med. 1996;20:1-9. [41] Tice RR, Agurell E, Anderson D, et al. Single cell gel/ comet assay: guide for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000;35: 206-221. [42] Nadin SB, Vargas-Roig M, Ciocca R. A silver staining method for single-cell gel assay. J Histochem Cytochem. 2001;49:1183-1186.[43] Spanier G, Xu H, Xia N, et al. Resveratrol reduces of superoxide dismutase 1, glutathione peroxidase 1 and NADPH oxidase subunit (Nox4). J Physiol Pharmacol. 2009;60(4):111-116.[44] Théry C, Chamak B, Mallat M. Cytotoxic effect of brain macrophages on developing. Eur J Neurosci. 1991;3(11): 1155-1164. [45] Desagher S, Glowinski J, Premont J. Astrocytes protect neurons from hydrogen peroxide toxicity. J Neurosci. 1996; 16(8):2553-2562. [46] De Ruvo C, Amodio R, Algeri S, et al. Nutritional antioxidants as antidegenerative agents. Int J Dev Neurosci. 2000;18(4-5):359-366. [47] Rubiolo JA, Vega FV. Resveratrol protects primary rat hepatocytes against necrosis induced by reactive oxygen species. Biomed Pharmacother. 2008;62(9):606-612.[48] Miura T, Muraoka S, Ikeda N, et al. Antioxidative and prooxidative action of stilbene derivatives. Pharmacol Toxicol. 2000;86(5):203-208. [49] Jang JH, Surh YJ. Protective effects of resveratrol on hydrogen peroxide-induced apoptosis in rat pheochromocytoma (PC12) cells. Mutat Res. 2001; 496(1-2):181-190. [50] Pervaiz S. Resveratrol: from grapevines to mammalian biology. FASEB J. 2003;17(14):1975-1985. [51] King RE, Kent KD, Bomser JA. Resveratrol reduces oxidation and proliferation of human retinal pigment epithelial cells via extracellular signal-regulated kinase inhibition. Chem Biol Interact. 2005;151(2):143-149. [52] Hirrlinger J, Resch A, Gutterer JM, et al. Oligodendroglial cells in culture effectively dispose of exogenous hydrogen peroxide: comparison with cultured neurones, astroglial and microglial cells. J Neurochem. 2002;82(3):635-644.[53] Buckman TD, Sutphin MS, Mitrovic B. Oxidative stress in a clonal cell line of neuronal origin: effects of antioxidant enzyme modulation. J Neurochem. 1993;60(6):2046-2058.[54] Behl C, Davis JB, Lesley R, et al. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell. 1994;77(6): 817-827. [55] Whittemore ER, Loo DT, Cotman CW. Exposure to hydrogen peroxide induces cell death via apoptosis in cultured rat cortical neurons. Neuroreport. 1994;5(12): 1485-1488. [56] Okawara M, Katsuki H, Kurimoto E, et al. Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults. Biochem Pharmacol. 2007;73(4): 550-560. [57] Zini R, Morin C, Bertelli A, et al. Effects of resveratrol on the rat brain respiratory chain. Drugs Exp Clin Res. 1999;25:87-97.[58] Li Y, Cao Z, Zhu H. Upregulation of endogenous antioxidants and phase 2 enzymes by the red wine polyphenol, resveratrol in cultured aortic smooth muscle cells leads to cytoprotection against oxidative and electrophilic stress. Pharmacol Res. 2006;53(1):6-15. [59] Good PF, Werner P, Hsu A, et al. Evidence of neuronal oxidative damage in Alzheimer's disease. Am J Pathol. 1996;149(1):21-28.[60] Good PF, Hsu A, Werner P, et al. Protein nitration in Parkinson's disease. J Neuropathol Exp Neurol. 1998; 57(4):338-342. [61] Beal MF, Ferrante RJ, Browne SE, et al. Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol. 1997;42(4):644-654.[62] Lee ST, Chu K, Jung KH, et al. Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain. 2008; 131(Pt 3):616-629. [63] Meneghini R. Genotoxicity of active oxygen species in mammalian cells. Mutat Res. 1988;195(3):215-230. [64] Villani P, Altavista PL, Castaldi L, et al. Analysis of DNA damage related to cell proliferation. Mutat Res. 2000;464: 229-237. [65] Kowaltowski AJ, Vercesi AE. Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med. 1999;26(3-4):463-471. [66] Birch-Machin MA. The role of mitochondria in ageing and carcinogenesis. Clin Exp Dermatol. 2006;31(4):548-552. [67] Zini R, Morin C, Bertelli A, et al. Resveratrol-induced limitation of dysfunction of mitochondria isolated from rat brain in an anoxia-reoxygenation model. Life Sci. 2002;71: 3091-3108. [68] Morin C, Zini R, Albengres E, et al. Evidence for resveratrol-induced preservation of brain mitochondria functions after hypoxia-reoxygenation. Drugs Exp Clin Res. 2003;29:227-233.[69] Parker JA, Arango M, Abderrahmane S, et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet. 2005;37:349-350. [70] Valenzano DR, Terzibasi E, Genade T, et al. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol. 2006;16(3): 296-300. |
[1] | Gao-Jing Xu, Qun Zhang, Si-Yue Li, Yi-Tong Zhu, Ke-Wei Yu, Chuan-Jie Wang, Hong-Yu Xie, Yi Wu. Environmental enrichment combined with fasudil treatment inhibits neuronal death in the hippocampal CA1 region and ameliorates memory deficits [J]. Neural Regeneration Research, 2021, 16(8): 1460-1466. |
[2] | Yu Li, Ping-Ping Shen, Bin Wang. Induced pluripotent stem cell technology for spinal cord injury: a promising alternative therapy [J]. Neural Regeneration Research, 2021, 16(8): 1500-1509. |
[3] | Sara Saffari, Tiam M. Saffari, Dietmar J. O. Ulrich, Steven E. R. Hovius, Alexander Y. Shin. The interaction of stem cells and vascularity in peripheral nerve regeneration [J]. Neural Regeneration Research, 2021, 16(8): 1510-1517. |
[4] | Stefan Kassumeh, Gregor R. Weber, Matthias Nobl, Siegfried G. Priglinger, Andreas Ohlmann. The neuroprotective role of Wnt signaling in the retina [J]. Neural Regeneration Research, 2021, 16(8): 1524-1528. |
[5] | Wan-Chao Yang, Hong-Ling Cao, Yue-Zhen Wang, Ting-Ting Li, Hong-Yu Hu, Qiang Wan, Wen-Zhi Li. Inhibition of nitric oxide synthase aggravates brain injury in diabetic rats with traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(8): 1574-1581. |
[6] | Ying Fan, Qiang Gao, Jia-Xin Guan, Lei Liu, Ming Hong, Li Jun, Li Wang, Hai-Feng Ding, Li-Hong Jiang, Bo-Yu Hou, Mei Li, Zhi-Qiang Song, De-Qin Sun, Chao-Qi Yan, Lan Ma. DDAH2 (-449 G/C) G allele is positively associated with leukoaraiosis in northeastern China: a double-blind, intergroup comparison, case-control study [J]. Neural Regeneration Research, 2021, 16(8): 1592-1597. |
[7] | Xue-Mei Zhang, Yang Sun, Ying-Lian Zhou, Zhuo-Min Jiao, Dan Yang, Yuan-Jiao Ouyang, Mei-Yu Yu, Jin-Yue Li, Wei Li, Duo Wang, Hui Yue, Jin Fu. Therapeutic effects of dental pulp stem cells on vascular dementia in rat models [J]. Neural Regeneration Research, 2021, 16(8): 1645-1651. |
[8] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[9] | Dulce Parra-Villamar, Liliana Blancas-Espinoza, Elisa Garcia-Vences, Juan Herrera-García, Adrian Flores-Romero, Alberto Toscano-Zapien, Jonathan Vilchis Villa, Rodríguez Barrera-Roxana, Soria Zavala Karla, Antonio Ibarra, Raúl Silva-García. Neuroprotective effect of immunomodulatory peptides in rats with traumatic spinal cord injury [J]. Neural Regeneration Research, 2021, 16(7): 1273-1280. |
[10] | Min Wang, Juan-Juan Tang, Lin-Xiao Wang, Jun Yu, Li Zhang, Chen Qiao. Hydrogen sulfide enhances adult neurogenesis in a mouse model of Parkinson’s disease [J]. Neural Regeneration Research, 2021, 16(7): 1353-1358. |
[11] | Zhe Cheng, Feng-Wu Li, Christopher R. Stone, Kenneth Elkin, Chang-Ya Peng, Redina Bardhi, Xiao-Kun Geng, Yu-Chuan Ding. Normobaric oxygen therapy attenuates hyperglycolysis in ischemic stroke [J]. Neural Regeneration Research, 2021, 16(6): 1017-1023. |
[12] | Zi-Qi Shao, Shan-Shan Dou, Jun-Ge Zhu, Hui-Qing Wang, Chun-Mei Wang, Bao-Hua Cheng, Bo Bai. Apelin-13 inhibits apoptosis and excessive autophagy in cerebral ischemia/reperfusion injury [J]. Neural Regeneration Research, 2021, 16(6): 1044-1051. |
[13] | Jian Zhang, Ren-Jie Wang, Miao Chen, Xiao-Yin Liu, Ke Ma, Hui-You Xu, Wu-Sheng Deng, Yi-Chao Ye, Wei-Xin Li, Xu-Yi Chen, Hong-Tao Sun. Collagen/heparan sulfate porous scaffolds loaded with neural stem cells improve neurological function in a rat model of traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(6): 1068-1077. |
[14] | Giuseppe Cappellano, Domizia Vecchio, Luca Magistrelli, Nausicaa Clemente, Davide Raineri, Camilla Barbero Mazzucca, Eleonora Virgilio, Umberto Dianzani, Annalisa Chiocchetti, Cristoforo Comi. The Yin-Yang of osteopontin in nervous system diseases: damage versus repair [J]. Neural Regeneration Research, 2021, 16(6): 1131-1137. |
[15] | Yuan Liu, Richard K. Lee. Cell transplantation to replace retinal ganglion cells faces challenges – the Switchboard Dilemma [J]. Neural Regeneration Research, 2021, 16(6): 1138-1141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||