Neural Regeneration Research ›› 2012, Vol. 7 ›› Issue (34): 2645-2652.doi: 10.3969/j.issn.1673-5374.2012.34.001
Yan Zhou, Maosheng Sun, Hongjun Li, Min Yan, Tianhong Xie
Received:
2012-08-15
Revised:
2012-10-23
Online:
2012-12-05
Published:
2012-10-23
Contact:
Hongjun Li, M.D., Researcher, Molecular Biology Laboratory, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan Province, China
lihj6912@hotmail.com
About author:
Yan Zhou☆, M.D., Molecular Biology Laboratory, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan Province, China
Yan Zhou, Maosheng Sun, Hongjun Li, Min Yan, Tianhong Xie. Differentiation of rhesus adipose stem cells into dopaminergic neurons[J]. Neural Regeneration Research, 2012, 7(34): 2645-2652.
[1] Lindvall O, Sawle G, Widner H, et al. Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson's disease. Ann Neurol. 1994; 35(2):172-180.[2] Freed CR, Breeze RE, Rosenberg NL, et al. Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson's disease. N Engl J Med. 1992;327(22): 1549-1555.[3] Fitzpatrick KM, Raschke J, Emborg ME. Cell-based therapies for Parkinson's disease: past, present, and future. Antioxid Redox Signal. 2009;11(9):2189-2208.[4] Bossolasco P, Cova L, Calzarossa C, et al. Neuro-glial differentiation of human bone marrow stem cells in vitro. Exp Neurol. 2005;193(2):312-325.[5] Dalous J, Larghero J, Baud O. Transplantation of umbilical cord-derived mesenchymal stem cells as a novel strategy to protect the central nervous system: technical aspects, preclinical studies, and clinical perspectives. Pediatr Res. 2012;71(4 Pt 2):482-490.[6] Kitada M, Dezawa M. Parkinson's disease and mesenchymal stem cells: potential for cell-based therapy. Parkinsons Dis. 2012;2012:873706.[7] Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211-228.[8] Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100(9): 1249-1260.[9] Nakao N, Nakayama T, Yahata T, et al. Adipose tissue-derived mesenchymal stem cells facilitate hematopoiesis in vitro and in vivo: advantages over bone marrow-derived mesenchymal stem cells. Am J Pathol. 2010;177(2):547-554.[10] Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294-1301.[11] Ning H, Lin G, Lue TF, et al. Neuron-like differentiation of adipose tissue-derived stromal cells and vascular smooth muscle cells. Differentiation. 2006;74(9-10):510-518.[12] Ning H, Lin G, Fandel T, et al. Insulin growth factor signaling mediates neuron-like differentiation of adipose tissue-derived stem cells. Differentiation. 2008;76(5): 488-494.[13] Ning H, Huang YC, Banie L, et al. MicroRNA regulation of neuron-like differentiation of adipose tissue-derived stem cells. Differentiation. 2009;78(5):253-259.[14] Kang SK, Putnam LA, Ylostalo J, et al. Neurogenesis of Rhesus adipose stem stromal cells. J Cell Sci. 2004; 117(18):4289-4299.[15] Dang L, Tropepe V. Neural induction and neural stem cell development. Regen Med. 2006;1(5):635-652.[16] Andersson E, Tryggvason U, Deng Q, et al. Identification of intrinsic determinants of midbrain dopamine neurons. Cell. 2006;124(2):393-405.[17] Cai J, Donaldson A, Yang M, et al. The role of Lmx1a in the differentiation of human embryonic stem cells into midbrain dopamine neurons in culture and after transplantation into a Parkinson's disease model. Stem Cells. 2009;27(1):220-229.[18] Friling S, Andersson E, Thompson LH, et al. Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proc Natl Acad Sci U S A. 2009;106(18):7613-7618.[19] Jandial R, Singec I, Ames CP, et al. Genetic modification of neural stem cells. Mol Ther. 2008;16(3):450-457.[20] Barzilay R, Ben-Zur T, Bulvik S, et al. Lentiviral delivery of LMX1a enhances dopaminergic phenotype in differentiated human bone marrow mesenchymal stem cells. Stem Cells Dev. 2009;18(4):591-601.[21] Vieira NM, Brandalise V, Zucconi E, et al. Isolation, characterization, and differentiation potential of canine adipose-derived stem cells. Cell Transplant. 2010;19(3): 279-289.[22] Locke M, Windsor J, Dunbar PR. Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ J Surg. 2009;79(4):235-244.[23] Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003;5(5):362-369.[24] Guilak F, Lott KE, Awad HA, et al. Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J Cell Physiol. 2006;206(1):229-237.[25] Johansson CB, Svensson M, Wallstedt L, et al. Neural stem cells in the adult human brain. Exp Cell Res. 1999; 253(2):733-736.[26] Curtis MA, Kam M, Nannmark U, et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science. 2007;315(5816):1243-1249.[27] Kan I, Barhum Y, Melamed E, et al. Mesenchymal stem cells stimulate endogenous neurogenesis in the subventricular zone of adult mice. Stem Cell Rev. 2011; 7(2):404-412.[28] Lu P, Blesch A, Tuszynski MH. Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J Neurosci Res. 2004;77(2):174-191.[29] Neuhuber B, Gallo G, Howard L, et al. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res. 2004;77(2):192-204.[30] Bertani N, Malatesta P, Volpi G, et al. Neurogenic potential of human mesenchymal stem cells revisited: analysis by immunostaining, time-lapse video and microarray. J Cell Sci. 2005;118(Pt 17):3925-3936.[31] Liao D, Gong P, Li X, et al. Co-culture with Schwann cells is an effective way for adipose-derived stem cells neural transdifferentiation. Arch Med Sci. 2010;6(2):145-151.[32] Peng J, Wang Y, Zhang L, et al. Human umbilical cord Wharton's jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro. Brain Res Bull. 2011;84(3):235-243. [33] The Ministry of Science and Technology of the People s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30.[34] Maiorana A, Fierabracci A, Cianfarani S. Isolation and characterization of omental adipose progenitor cells in children: a potential tool to unravel the pathogenesis of metabolic syndrome. Horm Res. 2009;72(6):348-358. [35] Alexanian AR. Neural stem cells induce bone-marrow- derived mesenchymal stem cells to generate neural stem-like cells via juxtacrine and paracrine interactions. Exp Cell Res. 2005;310(2):383-391. |
[1] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[2] | Ling-Yu Zhang, Qian-Qian Jin, Christian Hölscher, Lin Li. Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist DA-CH5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat Parkinson model [J]. Neural Regeneration Research, 2021, 16(8): 1660-1670. |
[3] | Meng-Shi Yang, Xiao-Jian Xu, Bin Zhang, Fei Niu, Bai-Yun Liu. Comparative transcriptomic analysis of rat versus mouse cerebral cortex after traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(7): 1235-1243. |
[4] | Min Wang, Juan-Juan Tang, Lin-Xiao Wang, Jun Yu, Li Zhang, Chen Qiao. Hydrogen sulfide enhances adult neurogenesis in a mouse model of Parkinson’s disease [J]. Neural Regeneration Research, 2021, 16(7): 1353-1358. |
[5] | Jian Zhang, Ren-Jie Wang, Miao Chen, Xiao-Yin Liu, Ke Ma, Hui-You Xu, Wu-Sheng Deng, Yi-Chao Ye, Wei-Xin Li, Xu-Yi Chen, Hong-Tao Sun. Collagen/heparan sulfate porous scaffolds loaded with neural stem cells improve neurological function in a rat model of traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(6): 1068-1077. |
[6] | Ming-Yu Shi, Cheng-Cheng Ma, Fang-Fang Chen, Xiao-Yu Zhou, Xue Li, Chuan-Xi Tang, Lin Zhang, Dian-Shuai Gao. Possible role of glial cell line-derived neurotrophic factor for predicting cognitive impairment in Parkinson’s disease: a case-control study [J]. Neural Regeneration Research, 2021, 16(5): 885-892. |
[7] | Zhi-Hai Ju, Xuan Liang, Yao-Yao Ren, Luo-Wa Shu, Yan-Hong Yan, Xu Cui. Neurons derived from human-induced pluripotent stem cells express mu and kappa opioid receptors [J]. Neural Regeneration Research, 2021, 16(4): 653-658. |
[8] | Chao Han, Ya-Jun Wang, Ya-Chen Wang, Xin Guan, Liang Wang, Li-Ming Shen, Wei Zou, Jing Liu. Caveolin-1 downregulation promotes the dopaminergic neuron-like differentiation of human adipose-derived mesenchymal stem cells [J]. Neural Regeneration Research, 2021, 16(4): 714-720. |
[9] | Takao Ishikawa. Saccharomyces cerevisiae in neuroscience: how unicellular organism helps to better understand prion protein? [J]. Neural Regeneration Research, 2021, 16(3): 489-495. |
[10] | Joseph A. Shehadi, Steven M. Elzein, Paul Beery, M. Chance Spalding, Michelle Pershing. Combined administration of platelet rich plasma and autologous bone marrow aspirate concentrate for spinal cord injury: a descriptive case series [J]. Neural Regeneration Research, 2021, 16(2): 362-366. |
[11] | Qilin Guo, Anja Scheller, Wenhui Huang. Progenies of NG2 glia: what do we learn from transgenic mouse models ? [J]. Neural Regeneration Research, 2021, 16(1): 43-48. |
[12] | Susan R. Goulding, Aideen M. Sullivan , Gerard W. O’Keeffe , Louise M. Collins. The potential of bone morphogenetic protein 2 as a neurotrophic factor for Parkinson’s disease [J]. Neural Regeneration Research, 2020, 15(8): 1432-1436. |
[13] | Ya Zheng, Ye-Ran Mao, Ti-Fei Yuan , Dong-Sheng Xu , Li-Ming Cheng. Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation [J]. Neural Regeneration Research, 2020, 15(8): 1437-1450. |
[14] | Peter J.G. Cussell, Margarita Gomez Escalada, Nathaniel G.N. Milton, Andrew W.J. Paterson. The N-formyl peptide receptors: contemporary roles in neuronal function and dysfunction [J]. Neural Regeneration Research, 2020, 15(7): 1191-1198. |
[15] | Feng-Jiao Li, Si-Ru Zheng, Dong-Mei Wang. Adrenomedullin: an important participant in neurological diseases [J]. Neural Regeneration Research, 2020, 15(7): 1199-1207. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||