Neural Regeneration Research ›› 2012, Vol. 7 ›› Issue (34): 2681-2688.doi: 10.3969/j.issn.1673-5374.2012.34.005
Previous Articles Next Articles
Youxin Song1, Zhujun Wang2, Zhixue Wang3, Hong Zhang4, Xiaohui Li2, Bin Chen1
Received:
2012-10-11
Revised:
2012-11-29
Online:
2012-12-05
Published:
2012-11-29
Contact:
Bin Chen, M.D., Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, Chinadrchenbin@yahoo.cn
About author:
Youxin Song☆, M.D., Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, China
Supported by:
This work was supported by the National Natural Science Foundation of China, No. 30801171; the Natural Science Foundation of Hebei Province, No. C2009001013 and No. H2012406015.
Youxin Song, Zhujun Wang, Zhixue Wang, Hong Zhang, Xiaohui Li, Bin Chen. Use of FK506 and bone marrow mesenchymal stem cells for rat hind limb allografts[J]. Neural Regeneration Research, 2012, 7(34): 2681-2688.
[1] Jones JW, Gruber SA, Barker JH, et al. Successful hand transplantation. One-year follow-up. Louisville Hand Transplant Team. N Engl J Med. 2000;343(7):468-473.[2] Jones NF. Concerns about human hand transplantation in the 21st century. J Hand Surg Am. 2002;27(5):771-787.[3] Dubernard JM, Owen E, Herzberg G, et al. Human hand allograft: report on first 6 months. Lancet. 1999; 353(9161):1315-1320.[4] Vögelin E. Hand transplantation-fiction or reality? Ther Umsch. 2011;68(12):730-734.[5] Kaufman CL, Ouseph R, Blair B, et al. Graft vasculopathy in clinical hand transplantation. Am J Transplant. 2012; 12(4):1004-1016. [6] Arai K, Hotokebuchi T, Miyahara H, et al. Limb allografts in rats immunosuppressed with FK506. I. Reversal of rejection and indefinite survival. Transplantation. 1989; 48(5):782-786.[7] Ishikane S, Ohnishi S, Yamahara K, et al. Allogeneic injection of fetal membrane-derived mesenchymal stem cells induces therapeutic angiogenesis in a rat model of hind limb ischemia. Stem Cells. 2008;26(10):2625-2633. [8] Huang WC, Lin JY, Wallace CG, et al. Vascularized bone grafts within composite tissue allotransplants can autocreate tolerance through mixed chimerism with partial myeloablative conditioning: an experimental study in rats. Plast Reconstr Surg. 2010;125(4):1095-1103.[9] Muramatsu K, Kuriyama R, Kato H, et al. Prolonged survival of experimental extremity allografts: a new protocol with total body irradiation, granulocyte-colony stimulation factor, and FK506. J Orthop Res. 2010;28(4): 457-461.[10] Muramatsu K, Moriya A, Hashimoto T, et al. Immunomodulatory effects of pre-irradiated extremity allograft in the rodent model. J Plast Reconstr Aesthet Surg. 2012;65(7):950-955.[11] Goto T, Kino T, Hatanaka H, et al. Discovery of FK-506, a novel immunosuppressant isolated from Streptomyces tsukubaensis. Transplant Proc. 1987;19(5 Suppl 6):4-8.[12] Tocci MJ, Matkovich DA, Collier KA, et al. The immunosuppressant FK506 selectively inhibits expression of early T cell activation genes. J Immunol. 1989;143(2): 718-726.[13] Song YX, Muramatsu K, Kurokawa Y, et al. Functional recovery of rat hind-limb allografts. J Reconstr Microsurg. 2005;21(7):471-476.[14] Ide C, Nakai Y, Nakano N, et al. Bone marrow stromal cell transplantation for treatment of sub-acute spinal cord injury in the rat. Brain Res. 2010;1332:32-47. [15] Mata M, Alessi D, Fink DJ. S100 is preferentially distributed in myelin-forming Schwann cells. J Neurocytol. 1990;19(3):432-442.[16] Paik SK, Lee DS, Kim JY, et al. Quantitative ultrastructural analysis of the neurofilament 200-positive axons in the rat dental pulp. J Endod. 2010;36(10):1638-1642.[17] Doolabh VB, Mackinnon SE. FK506 accelerates functional recovery following nerve grafting in a rat model. Plast Reconstr Surg. 1999;103(7):1928-1936.[18] Jensen JN, Brenner MJ, Tung TH, et al. Effect of FK506 on peripheral nerve regeneration through long grafts in inbred swine. Ann Plast Surg. 2005;54(4):420-427.[19] Rustemeyer J, van de Wal R, Keipert C, et al. Administration of low-dose FK 506 accelerates histomorphometric regeneration and functional outcomes after allograft nerve repair in a rat model. J Craniomaxillofac Surg. 2010;38(2):134-140. [20] Toll EC, Seifalian AM, Birchall MA. The role of immunophilin ligands in nerve regeneration. Regen Med. 2011;6(5):635-652.[21] Yan Y, Sun HH, Mackinnon SE, et al. Evaluation of peripheral nerve regeneration via in vivo serial transcutaneous imaging using transgenic Thy1-YFP mice. Exp Neurol. 2011;232(1):7-14.[22] Gold BG. FK506 and the role of immunophilins in nerve regeneration. Mol Neurobiol. 1997;15(3):285-306.[23] Yang X, Ewald ER, Huo Y, et al. Glucocorticoid-induced loss of DNA methylation in non-neuronal cells and potential involvement of DNMT1 in epigenetic regulation of Fkbp5. Biochem Biophys Res Commun. 2012;420(3): 570-575. [24] Lyons WE, Steiner JP, Snyder SH, et al. Neuronal regeneration enhances the expression of the immunophilin FKBP-12. J Neurosci. 1995;15(4): 2985-2994.[25] Pereira U, Boulais N, Lebonvallet N, et al. Mechanisms of the sensory effects of tacrolimus on the skin. Br J Dermatol. 2010;163(1):70-77. [26] Szydlowska K, Gozdz A, Dabrowski M, et al. Prolonged activation of ERK triggers glutamate-induced apoptosis of astrocytes: neuroprotective effect of FK506. J Neurochem. 2010;113(4):904-918. [27] Shin HJ, Jeon BT, Kim J, et al. Effect of the calcineurin inhibitor FK506 on K+-Cl- cotransporter 2 expression in the mouse hippocampus after kainic acid-induced status epilepticus. J Neural Transm. 2012;119(6):669-677.[28] Grand AG, Myckatyn TM, Mackinnon SE, et al. Axonal regeneration after cold preservation of nerve allografts and immunosuppression with tacrolimus in mice. J Neurosurg. 2002;96(5):924-932.[29] Konofaos P, Burns J, Terzis JK. Effect of low-dose FK506 after contralateral C7 transfer to the musculocutaneous nerve: a study in rats. J Reconstr Microsurg. 2010;26(4): 225-233. [30] Navarro X, Udina E, Ceballos D, et al. Effects of FK506 on nerve regeneration and reinnervation after graft or tube repair of long nerve gaps. Muscle Nerve. 2001;24(7): 905-915.[31] Yeh C, Bowers D, Hadlock TA. Effect of FK506 on functional recovery after facial nerve injury in the rat. Arch Facial Plast Surg. 2007;9(5):333-339.[32] Deng W, Obrocka M, Fischer I, et al. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun. 2001;282(1): 148-152.[33] Akiyama Y, Radtke C, Kocsis JD. Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J Neurosci. 2002;22(15):6623-6630.[34] Koopmans G, Hasse B, Sinis N. Chapter 19: The role of collagen in peripheral nerve repair. Int Rev Neurobiol. 2009;87:363-379.[35] Yang Y, Yuan X, Ding F, et al. Repair of rat sciatic nerve gap by a silk fibroin-based scaffold added with bone marrow mesenchymal stem cells. Tissue Eng Part A. 2011;17(17-18):2231-2244. [36] Seth R, Revenaugh PC, Kaltenbach JA, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147(5): 832-840. [37] Shichinohe H, Kuroda S, Maruichi K, et al. Bone marrow stromal cells and bone marrow-derived mononuclear cells: which are suitable as cell source of transplantation for mice infarct brain? Neuropathology. 2010;30(2):113-122.[38] Thompson DM, Meloche M, Ao Z, et al. Reduced progression of diabetic microvascular complications with islet cell transplantation compared with intensive medical therapy. Transplantation. 2011;91(3):373-378.[39] Rustemeyer J, Dicke U. Allografting combined with systemic FK506 produces greater functional recovery than conduit implantation in a rat model of sciatic nerve injury. J Reconstr Microsurg. 2010;26(2):123-129. [40] Azizi S, Mohammadi R, Amini K, et al. Effects of topically administered FK506 on sciatic nerve regeneration and reinnervation after vein graft repair of short nerve gaps. Neurosurg Focus. 2012;32(5):E5.[41] The Ministry of Science and Technology of the People’s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30.[42] Chen B, Song Y, Liu Z. Promotion of nerve regeneration in peripheral nerve by short-course FK506 after end-to-side neurorrhaphy. J Surg Res. 2009;152(2):303-310. [43] Bain JR, Mackinnon SE, Hudson AR, et al. The peripheral nerve allograft: a dose-response curve in the rat immunosuppressed with cyclosporin A. Plast Reconstr Surg. 1988;82(3):447-457.[44] de Medinaceli L, Freed WJ, Wyatt RJ. An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp Neurol. 1982;77(3):634-643. |
[1] | Yu Li, Ping-Ping Shen, Bin Wang. Induced pluripotent stem cell technology for spinal cord injury: a promising alternative therapy [J]. Neural Regeneration Research, 2021, 16(8): 1500-1509. |
[2] | Sara Saffari, Tiam M. Saffari, Dietmar J. O. Ulrich, Steven E. R. Hovius, Alexander Y. Shin. The interaction of stem cells and vascularity in peripheral nerve regeneration [J]. Neural Regeneration Research, 2021, 16(8): 1510-1517. |
[3] | Ci Li, Song-Yang Liu, Wei Pi, Pei-Xun Zhang. Cortical plasticity and nerve regeneration after peripheral nerve injury [J]. Neural Regeneration Research, 2021, 16(8): 1518-1523. |
[4] | Shi-Qin Lv, Wutian Wu. ISP and PAP4 peptides promote motor functional recovery after peripheral nerve injury [J]. Neural Regeneration Research, 2021, 16(8): 1598-1605. |
[5] | Guo-Yu Wang, Zhi-Jian Cheng, Pu-Wei Yuan, Hao-Peng Li, Xi-Jing He. Olfactory ensheathing cell transplantation alters the expression of chondroitin sulfate proteoglycans and promotes axonal regeneration after spinal cord injury [J]. Neural Regeneration Research, 2021, 16(8): 1638-1644. |
[6] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[7] | Wen-Jing Wang, Yan-Biao Zhong, Jing-Jun Zhao, Meng Ren, Si-Cong Zhang, Ming-Shu Xu, Shu-Tian Xu, Ying-Jie Zhang, Chun-Lei Shan. Transcranial pulse current stimulation improves the locomotor function in a rat model of stroke [J]. Neural Regeneration Research, 2021, 16(7): 1229-1234. |
[8] | Ayaka Sugeno, Wenhui Piao, Miki Yamazaki, Kiyofumi Takahashi, Koji Arikawa, Hiroko Matsunaga, Masahito Hosokawa, Daisuke Tominaga, Yoshio Goshima, Haruko Takeyama, Toshio Ohshima. Cortical transcriptome analysis after spinal cord injury reveals the regenerative mechanism of central nervous system in CRMP2 knock-in mice [J]. Neural Regeneration Research, 2021, 16(7): 1258-1265. |
[9] | Dulce Parra-Villamar, Liliana Blancas-Espinoza, Elisa Garcia-Vences, Juan Herrera-García, Adrian Flores-Romero, Alberto Toscano-Zapien, Jonathan Vilchis Villa, Rodríguez Barrera-Roxana, Soria Zavala Karla, Antonio Ibarra, Raúl Silva-García. Neuroprotective effect of immunomodulatory peptides in rats with traumatic spinal cord injury [J]. Neural Regeneration Research, 2021, 16(7): 1273-1280. |
[10] | Allison S. Liang, Joanna E. Pagano, Christopher A. Chrzan, Randall D. McKinnon. Suicide transport blockade of motor neuron survival generates a focal graded injury and functional deficit [J]. Neural Regeneration Research, 2021, 16(7): 1281-1287. |
[11] | Rui-Lin Zhu, Yuan Fang, Hong-Hua Yu, Dong F. Chen, Liu Yang, Kin-Sang Cho. Absence of ephrin-A2/A3 increases retinal regenerative potential for Müller cells in Rhodopsin knockout mice [J]. Neural Regeneration Research, 2021, 16(7): 1317-1322. |
[12] | Rong Li, Zu-Cheng Huang, Hong-Yan Cui, Zhi-Ping Huang, Jun-Hao Liu, Qing-An Zhu, Yong Hu. Utility of somatosensory and motor-evoked potentials in reflecting gross and fine motor functions after unilateral cervical spinal cord contusion injury [J]. Neural Regeneration Research, 2021, 16(7): 1323-1330. |
[13] | Zhong-Yue Lv, Ying Li, Jing Liu. Progress in clinical trials of stem cell therapy for cerebral palsy [J]. Neural Regeneration Research, 2021, 16(7): 1377-1382. |
[14] | Zi-Qi Shao, Shan-Shan Dou, Jun-Ge Zhu, Hui-Qing Wang, Chun-Mei Wang, Bao-Hua Cheng, Bo Bai. Apelin-13 inhibits apoptosis and excessive autophagy in cerebral ischemia/reperfusion injury [J]. Neural Regeneration Research, 2021, 16(6): 1044-1051. |
[15] | Qiu-Shi Gao, Ya-Han Zhang, Hang Xue, Zi-Yi Wu, Chang Li, Ping Zhao . Brief inhalation of sevoflurane can reduce glial scar formation after hypoxic-ischemic brain injury in neonatal rats [J]. Neural Regeneration Research, 2021, 16(6): 1052-1061. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||