Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (1): 56-63.doi: 10.3969/j.issn.1673-5374.2013.01.007
Previous Articles Next Articles
Min Kong1, Maowen Ba2, Hui Liang1, Peng Shao1, Tianxia Yu1, Ying Wang1
Received:
2012-09-25
Revised:
2012-11-30
Online:
2013-01-05
Published:
2013-01-05
Contact:
Min Kong, Department of Neurology, Yantaishan Hospital, Yantai 264000, Shandong Province, China, kk_kmm@sina.com. Maowen Ba, Ph.D., Attending physician, Department of Neurology, Yuhuangding Hospital Affiliated to Qingdao Medical University, Yantai 264000, Shandong Province, China, bamaowen@ yahoo.com.cn.
About author:
Min Kong☆, Ph.D., Attending physician.
Min Kong and Maowen Ba contributed equally to this article.
Supported by:
This study was financially supported by the Project Sponsored by Yantai Science and Technology Bureau, China, No. 2010232.
Min Kong, Maowen Ba, Hui Liang, Peng Shao, Tianxia Yu, Ying Wang. Regulation of adenosine triphosphate-sensitive potassium channels suppresses the toxic effects of amyloid-beta peptide (25–35)[J]. Neural Regeneration Research, 2013, 8(1): 56-63.
[1] Lehéricy S, Hirsch EC, Cervera-Piérot P, et al. Heterogeneity and selectivity of the degeneration of cholinergic neurons in the basal forebrain of patients with Alzheimer's disease. J Comp Neurol. 1993;330(1):15-31.http://onlinelibrary.wiley.com/doi/10.1002/cne.903300103/abstract [2] Barnham KJ, Cappai R, Beyreuther K, et al. Delineating common molecular mechanisms in Alzheimer's and prion diseases. Trends Biochem Sci. 2006;31(8):465-472.http://www.cell.com/trends/biochemical-sciences/abstract/S0968-0004(06)00168-X [3] Abad MA, Enguita M, DeGregorio-Rocasolano N, et al. Neuronal pentraxin 1 contributes to the neuronal damage evoked by amyloid-beta and is overexpressed in dystrophic neurites in Alzheimer's brain. J Neurosci. 2006;26(49):12735-12747.http://www.jneurosci.org/content/26/49/12735 [4] Tickler AK, Wade JD, Separovic F. The role of Abeta peptides in Alzheimer's disease. Protein Pept Lett. 2005;12(6):513-519.http://www.benthamdirect.org/pages/content.php?PPL/2005/00000012/00000006/0003E.SGM [5] Kaminsky YG, Marlatt MW, Smith MA, et al. Subcellular and metabolic examination of amyloid-beta peptides in Alzheimer disease pathogenesis: evidence for Abeta(25-35). Exp Neurol. 2010;221(1):26-37.http://www.sciencedirect.com/science/article/pii/S0014488609003781 [6] Gao X, Tang XC. Huperzine A attenuates mitochondrial dysfunction in beta-amyloid-treated PC12 cells by reducing oxygen free radicals accumulation and improving mitochondrial energy metabolism. J Neurosci Res. 2006;83(6):1048-1057.http://onlinelibrary.wiley.com/doi/10.1002/jnr.20791/abstract [7] Silva DF, Esteves AR, Oliveira CR, et al. Mitochondria: the common upstream driver of amyloid-β and tau pathology in Alzheimer's disease. Curr Alzheimer Res. 2011;8(5):563-572.http://www.benthamdirect.org/pages/content.php?CAR/2011/00000008/00000005/011AT.SGM [8] Maruszak A, ?ekanowski C. Mitochondrial dysfunction and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(2):320-330.http://www.sciencedirect.com/science/article/pii/S0278584610002526 [9] Zawar C, Plant TD, Schirra C, et al. Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J Physiol. 1999;514 ( Pt 2):327-341. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2269073/?tool=pubmed [10] Ma G, Fu Q, Zhang Y, et al. Effects of Abeta1-42 on the subunits of KATP expression in cultured primary rat basal forebrain neurons. Neurochem Res. 2008;33(7):1419-1424.http://www.springerlink.com/content/8586gmq372812157/ [11] Ala-Rämi A, Ylitalo KV, Hassinen IE. Ischaemic preconditioning and a mitochondrial KATP channel opener both produce cardioprotection accompanied by F1F0-ATPase inhibition in early ischaemia. Basic Res Cardiol. 2003;98(4):250-258.http://www.springerlink.com/content/101550/ [12] Goodman Y, Mattson MP. K+ channel openers protect hippocampal neurons against oxidative injury and amyloid b-peptide toxicity. Brain Res. 1996;706(2):328–332.http://www.sciencedirect.com/science/article/pii/0006899395013679 [13] Hu LF, Wang S, Shi XR, et al. ATP-sensitive potassium channel opener iptakalim protected against the cytotoxicity of MPP+ on SH-SY5Y cells by decreasing extracellular glutamate level. J Neurochem. 2005;94(6):1570-1579.http://cid.oxfordjournals.org/content/14/5/1119.long [14] Lacza Z, Pankotai E, Busija DW. Mitochondrial nitric oxide synthase: current concepts and controversies. Front Biosci. 2009;14:4436-4443.http://www.bioscience.org/2009/v14/af/3539/fulltext.htm [15] Blanco S, Molina FJ, Castro L, et al.Study of the nitric oxide system in the rat cerebellum during aging.BMC Neurosci. 2010;11:78.http://www.biomedcentral.com/1471-2202/11/78 [16] Haas J, Storch-Hagenlocher B, Biessmann A, et al. Inducible nitric oxide synthase and argininosuccinate synthetase: co-induction in brain tissue of patients with Alzheimer's dementia and following stimulation with beta-amyloid 1-42 in vitro. Neurosci Lett. 2002;322(2):121-125.http://www.sciencedirect.com/science/article/pii/S0304394002000952 [17] Abramson SB, Amin AR, Clancy RM, et al. The role of nitric oxide in tissue destruction.Best Pract Res Clin Rheumatol. 2001;15(5):831-845.http://www.bprclinrheum.com/article/S1521-6942(01)90196-2/abstract [18] Mathur A, Hong Y, Kemp BK, et al. Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res. 2000;46(1):126-138. http://cardiovascres.oxfordjournals.org/content/46/1/126.long [19] Teshima Y, Akao M, Li RA, et al. Mitochondrial ATP-sensitive potassium channel activation protects cerebellar granule neurons from apoptosis induced by oxidative stress. Stroke. 2003;34(7):1796-1802.http://stroke.ahajournals.org/content/34/7/1796.long [20] Bednarczyk P. Potassium channels in brain mitochondria. Acta Biochim Pol. 2009;56(3):385-392. http://www.actabp.pl/pdf/3_2009/385.pdf [21] Shearman MS, Ragan CI, Iversen LL. Inhibition of PC12 cell redox activity is a specific, early indicator of the mechanism of beta-amyloid-mediated cell death. Proc Natl Acad Sci U S A. 1994;91(4):1470-1474.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC43181/?tool=pubmed [22] Liu Y, Schubert D. Cytotoxic amyloid peptides inhibit cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction by enhancing MTT formazan exocytosis. J Neurochem. 1997;69(6):2285-2293.http://onlinelibrary.wiley.com/doi/10.1046/j.1471-4159.1997.69062285.x/abstract [23] Han JS, Wang HS, Yan DM, et al. Myocardial ischaemic and diazoxide preconditioning both increase PGC-1alpha and reduce mitochondrial damage. Acta Cardiol. 2010;65(6):639-644.http://poj.peeters-leuven.be/content.php?url=article&id=2059860 [24] Dumont M, Beal MF. Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic Biol Med. 2011;51(5):1014-1026.http://dx.doi.org/10.1016/j.freeradbiomed.2010.11.026 [25] Pagani L, Eckert A. Amyloid-Beta interaction with mitochondria. Int J Alzheimers Dis. 2011;2011:925050.http://www.hindawi.com/journals/ijad/2011/925050/ [26] Chen JX, Yan SS. Role of mitochondrial amyloid-beta in Alzheimer's disease. J Alzheimers Dis. 2010;20( Suppl 2):S569-578.http://iospress.metapress.com/content/105656/ [27] Ozcan C, Bienengraeber M, Dzeja PP, et al. Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation. Am J Physiol Heart Circ Physiol. 2002;282(2):H531-539.http://ajpheart.physiology.org/content/282/2/H531.long [28] Ishii K, Muelhauser F, Liebl U, et al. Subacute NO generation induced by Alzheimer's beta-amyloid in the living brain: reversal by inhibition of the inducible NO synthase. FASEB J. 2000;14(11):1485-1489. http://www.fasebj.org/content/14/11/1485.long [29] Tsai SJ, Liu WH, Yin MC. Trans Fatty acids enhanced Beta-amyloid induced oxidative stress in nerve growth factor differentiated PC12 cells. Neurochem Res. 2012;37(4):786-794.http://www.springerlink.com/content/070u234h5l551573/ [30] Ahmadian S, Barar J, Saei AA, et al. Cellular toxicity of nanogenomedicine in MCF-7 cell line: MTT assay. J Vis Exp. 2009;(26). pii:1191. http://www.jove.com/video/1191/cellular-toxicity-of-nanogenomedicine-in-mcf-7-cell-line-mtt-assay?ID=1191 [31] Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol. 2010;594:57-72.http://www.springerlink.com/content/l7l18835153639x5/ |
[1] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[2] | Ming-Yu Shi, Cheng-Cheng Ma, Fang-Fang Chen, Xiao-Yu Zhou, Xue Li, Chuan-Xi Tang, Lin Zhang, Dian-Shuai Gao. Possible role of glial cell line-derived neurotrophic factor for predicting cognitive impairment in Parkinson’s disease: a case-control study [J]. Neural Regeneration Research, 2021, 16(5): 885-892. |
[3] | Mariam Rizk, Justin Vu, Zhi Zhang. Impact of pediatric traumatic brain injury on hippocampal neurogenesis [J]. Neural Regeneration Research, 2021, 16(5): 926-933. |
[4] | Magdalini Tsintou, Kyriakos Dalamagkas, Tara L. Moore, Yogesh Rathi, Marek Kubicki, Douglas L. Rosene, Nikos Makris. The use of hydrogel-delivered extracellular vesicles in recovery of motor function in stroke: a testable experimental hypothesis for clinical translation including behavioral and neuroimaging assessment approaches [J]. Neural Regeneration Research, 2021, 16(4): 605-613. |
[5] | Takao Ishikawa. Saccharomyces cerevisiae in neuroscience: how unicellular organism helps to better understand prion protein? [J]. Neural Regeneration Research, 2021, 16(3): 489-495. |
[6] | Joseph A. Shehadi, Steven M. Elzein, Paul Beery, M. Chance Spalding, Michelle Pershing. Combined administration of platelet rich plasma and autologous bone marrow aspirate concentrate for spinal cord injury: a descriptive case series [J]. Neural Regeneration Research, 2021, 16(2): 362-366. |
[7] | Yang-Yang Wang, Na Han, Dao-Jun Hong, Jun Zhang. Nogo-A aggravates oxidative damage in oligodendrocytes [J]. Neural Regeneration Research, 2021, 16(1): 179-185. |
[8] | Susan R. Goulding, Aideen M. Sullivan , Gerard W. O’Keeffe , Louise M. Collins. The potential of bone morphogenetic protein 2 as a neurotrophic factor for Parkinson’s disease [J]. Neural Regeneration Research, 2020, 15(8): 1432-1436. |
[9] | Yan Zhang, Bao-You Fan, Yi-Lin Pang, Wen-Yuan Shen, Xu Wang, Chen-Xi Zhao, Wen-Xiang Li, Chang Liu , Xiao-Hong Kong , Guang-Zhi Ning, Shi-Qing Feng, Xue Yao . Neuroprotective effect of deferoxamine on erastininduced ferroptosis in primary cortical neurons [J]. Neural Regeneration Research, 2020, 15(8): 1539-1545. |
[10] | Lian Liu , Xiao-Yuan Sha , Yi-Ning Wu , Meng-Ting Chen , Jing-Xiang Zhong, . Lycium barbarum polysaccharides protects retinal ganglion cells against oxidative stress injury [J]. Neural Regeneration Research, 2020, 15(8): 1526-1531. |
[11] | Ya Zheng, Ye-Ran Mao, Ti-Fei Yuan , Dong-Sheng Xu , Li-Ming Cheng. Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation [J]. Neural Regeneration Research, 2020, 15(8): 1437-1450. |
[12] | Peter J.G. Cussell, Margarita Gomez Escalada, Nathaniel G.N. Milton, Andrew W.J. Paterson. The N-formyl peptide receptors: contemporary roles in neuronal function and dysfunction [J]. Neural Regeneration Research, 2020, 15(7): 1191-1198. |
[13] | Feng-Jiao Li, Si-Ru Zheng, Dong-Mei Wang. Adrenomedullin: an important participant in neurological diseases [J]. Neural Regeneration Research, 2020, 15(7): 1199-1207. |
[14] | Bilal Abdul Bari, Varun Chokshi, Katharina Schmidt. Locus coeruleus-norepinephrine: basic functions and insights into Parkinson’s disease [J]. Neural Regeneration Research, 2020, 15(6): 1006-1013. |
[15] | Rong-Lu Pan, Wen-Qing Hu, Jie Pan, Li Huang, Cheng-Cheng Luan, Hong-Mei Shen. Achyranthes bidentata polypeptides prevent apoptosis by inhibiting the glutamate current in cultured hippocampal neurons [J]. Neural Regeneration Research, 2020, 15(6): 1086-1093. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||