Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (6): 532-539.doi: 10.3969/j.issn.1673-5374.2013.06.006
Previous Articles Next Articles
Xuan Lu1, Zelin Chen1, Yi Guo1, Liang Gao1, Liyuan Jiang1, Zhongzheng Li1, Jianqiao Fang2
Received:
2012-11-15
Revised:
2013-01-10
Online:
2013-02-25
Published:
2013-02-25
Contact:
Jianqiao Fang, Ph.D., Professor, Doctoral supervisor, Third Clinical College of Zhejiang Chinese Medical University, Hangzhou 310005, Zhejiang Province, China, fangjianqiao@yahoo.com.cn. Zelin Chen, Ph.D., Professor, Master’s supervisor, Experimental Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, chenzelin328@163.com.
About author:
Xuan Lu★, Master
Supported by:
This study was sponsored by the Open Research Fund of Zhejiang First-foremost Key Subject—Acupuncture & Moxibustion, No. ZTK2010A07.
Xuan Lu, Zelin Chen, Yi Guo, Liang Gao, Liyuan Jiang, Zhongzheng Li, Jianqiao Fang. Blood-letting punctures at twelve Jing-Well points of the hand can treat cerebral ischemia in a similar manner to mannitol[J]. Neural Regeneration Research, 2013, 8(6): 532-539.
[1] Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 2003;4(5):399-415.[2] Donnan GA, Fisher M, Macleod M, et al. Stroke. Lancet. 2008;371(9624):1612-1623. [3] Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000;6(2):159-163. [4] Kofke WA. Mannitol: potential for rebound intracranial hypertension? J Neurosurg Anesthesiol. 1993;5(1):1-3. [5] Khanna S, Davis D, Peterson B, et al. Use of hypertonic saline in the treatment of severe refractory posttraumatic intracranial hypertension in pediatric traumatic brain injury. Crit Care Med. 2000;28(4):1144-1151. [6] Node Y, Nakazawa S. Clinical study of mannitol and glycerol on raised intracranial pressure and on their rebound phenomenon. Adv Neurol. 1990;52:359-363. [7] Guo Y, Zhang YJ, Wang XY, et al. Effects of blood-letting puncture at twelve Jing-Well points of hand on the intracranial haemodynamics of stroke patients. Zhenjiu Linchuang Zazhi. 1995;11(6):21-23. [8] Li Q, Wang X, Ren HZ, et al. Effects of blood-letting puncture at twelve Jing-Well points of hand on the cerebral blood flow. Zhongguo Zhongyiyao Xinxi Zazhi. 2000;7(3):51. [9] Ding J, Guo Y. Effects of pricking blood at twelve Jing points of hand on state of consciousness in the patient of early stroke. Zhongguo Zhenjiu. 2004;24(10):673-676. [10] Guo Y, Wang XY, Xu TP, et al. Clinical observation of the influence of puncture and blood letting at twelve Hand Jing Point on consciousness and heart rate in patients with wind stroke. Tianjin Zhongyiyao. 2003;20(2):35-37.[11] Zhang XH, Sun SX, Xu BJ. The basic research on the effect of blood-letting puncture at Jing-Well points on the infarction volume after focal cerebral ischemia in rats. Zhenjiu Linchuang Zazhi. 2004;20(12):47-48.[12] Huang BL, Yu LZ, Liu SX, et al. The effects of blood-letting puncture in twelve-well points of the hand on content of MDA and activity of SOD after focal cerebral ischemia in rats. Xianning Xueyuan Xuebao. 2005;19(1):4-6. [13] Ma YF, Guo Y, Zhang YJ, et al. Dynamic observation of the influence of blood-letting puncture of hand twelve well points on partial pressure of oxygen in ischemic brain tissue in rats with experimental cerebral ischemia. Shanghai Zhenjiu Zazhi. 2000;19(1):40-42. [14] He SQ, Guo Y, Ma YF, et al. Experimental research on the effects of blood-letting puncture at twelve Jing-Well points of hand on hydrogen ion concentration of ischemia area in rats with experimental cerebral ischemia. Zhenjiu Linchuang Zazhi. 2002;18(2):43-45. [15] Ma YF, Guo Y, Wang XY, et al. The experimental observation on affect the CaM content of the cerebral ischemia region intracellular of MCAO model rat by blood-letting puncture in twelve-well points. Zhenci Yanjiu. 1999;24(2):105-107. [16] Guo Y, Hu LM, Zhang YJ, et al. Dynamic observation of the influence of blood-letting puncture of hand twelve well points on extracellular calcium ion concentration in rats with experimental cerebral ischemia. Zhenjiu Linchuang Zazhi. 1999;15(6):48-50. [17] Ren XJ, Tu Y, Guo Y, et al. Dynamic observation of the effects of bloodletting of the 12 hand Jing-Points on the level of excitatory amino acid in the brain of the rats with cerebral ischemia. Beijing Zhongyiyao Daxue Xuebao. 2001;24(6):48-51. [18] Ren XJ, Tu Y, Guo Y, et al. Effects of the bloodletting of the 12 hand Jing-Points on the level of nitric oxide in the brain of the rats with cerebral ischemia. Beijing Zhongyiyao Daxue Xuebao. 2001;24(4):51-53. [19] Huang BL, Yu LZ, Cheng J. Intervention of blood-letting puncture on 12-well points of hand on activity of nitric oxide synthase after focal cerebral ischemia in rats. Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu. 2006;10(7):174-176. [20] Wang XY, Li JS, Liu GW, et al. Effect of collateral puncture-bloodletting at Jing point on expression of HSP70 protein of cerebral cortex in rats with middle cerebral artery occlusion. Tianjin Zhongyiyao. 2005; 22(6):477-479. [21] Wang XY, Li JS, Guo Y, et al. The influence of blood-letting puncture of twelve Jing-Well points on corticocerebral C-fos protein expression in rat MCAO model. Shanghai Zhenjiu Zazhi. 2004;23(12):39-41. [22] Gao L. The influences of blood-letting puncture at Jing-points and Chinese herb Job’s tears (Yiyiren) on the survival rate and brain edema in experimental cerebral ischemic rats. Tianjin: Tianjin University of Traditional Chinese Medicine. 2009. [23] Tian LX. Study on the brain-protecting effect of bloodletting puncture at Jing(Well)-points and semen coicis (Yiyiren)—the influences on survival rate, survival time and brain edema in cerebral ischemic rats. Tianjin: Tianjin University of Traditional Chinese Medicine. 2010. [24] del Zoppo GJ, Mabuchi T. Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab. 2003;23(8):879-894. [25] Brown RC, Mark KS, Egleton RD, et al. Protection against hypoxia-induced increase in blood-brain barrier permeability: role of tight junction proteins and NF kappaB. J Cell Sci. 2003;116(Pt 4):693-700. [26] Klatzo I. Pathophysiological aspects of brain edema. Acta Neuropathol. 1987;72(3):236-239. [27] Mayhan WG. Role of nitric oxide in histamine-induced increases in permeability of the blood-brain barrier. Brain Res. 1996;743(1-2):70-76. [28] Huang BL, Chen J. The effects of blood-letting puncture in “Twelve-Well Points of the Hand” on content of NO and activity of NOS after focal cerebral ischemia in rats. Xianning Xueyuan Xuebao: Yixue Ban. 2004;18(5): 312-314.[29] Rosenberg GA, Estrada EY, Dencoff JE. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke. 1998;29(10):2189-2195. [30] Yang ZZ, Chen H, Yan MY, et al. Experimental study of alteration of blood-brain barrier leakage after acute cerebral ischemia in rats. Zhonghua Zhongyiyao Xuekan. 2009;27(3):26-28. [31] Kader A, Frazzini VI, Solomon RA, et al. Nitric oxide production during focal cerebral ischemia in rats. Stroke. 1993;24(11):1709-1716. [32] Chi OZ, Wei HM, Sinha AK, et al. Effects of inhibition of nitric oxide synthase on blood-brain barrier transport in focal cerebral ischemia. Pharmacology. 1994;48(6): 367-373. [33] Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc Res. 1999;43(3):521-531.[34] Sehara Y, Hayashi T, Deguchi K, et al. Distribution of inducible nitric oxide synthase and cell proliferation in rat brain after transient middle cerebral artery occlusion. Brain Res. 2006;1093(1):190-197. [35] Witt KA, Mark KS, Hom S, et al. Effects of hypoxia-reoxygenation on rat blood-brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol. 2003;285(6):H2820-2831. [36] Wagner S, Tagaya M, Koziol JA, et al. Rapid disruption of an astrocyte interaction with the extracellular matrix mediated by integrin alpha 6 beta 4 during focal cerebral ischemia/reperfusion. Stroke. 1997;28(4):858-865. [37] Hamann GF, Liebetrau M, Martens H, et al. Microvascular basal lamina injury after experimental focal cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab. 2002;22(5):526-533. [38] Brown RC, Davis TP. Calcium modulation of adherens and tight junction function: a potential mechanism for blood-brain barrier disruption after stroke. Stroke. 2002; 33(6):1706-1711. [39] Ikeda K, Nagashima T, Wu S, et al. The role of calcium ion in anoxia/reoxygenation damage of cultured brain capillary endothelial cells. Acta Neurochir Suppl. 1997; 70:4-7. [40] Kimura C, Oike M, Ito Y. Hypoxia-induced alterations in Ca(2+) mobilization in brain microvascular endothelial cells. Am J Physiol Heart Circ Physiol. 2000;279(5): H2310-2318. [41] Park JH, Okayama N, Gute D, et al. Hypoxia/aglycemia increases endothelial permeability: role of second messengers and cytoskeleton. Am J Physiol. 1999;277(6 Pt 1):C1066-1074. [42] Abbruscato TJ, Davis TP. Combination of hypoxia/aglycemia compromises in vitro blood-brain barrier integrity. J Pharmacol Exp Ther. 1999;289(2): 668-675. [43] Chan PH, Schmidley JW, Fishman RA, et al. Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals. Neurology. 1984;34(3): 315-320. [44] Griot C, Vandevelde M, Richard A, et al. Selective degeneration of oligodendrocytes mediated by reactive oxygen species. Free Radic Res Commun. 1990;11(4-5): 181-193. [45] Kim YS, Kim SU. Oligodendroglial cell death induced by oxygen radicals and its protection by catalase. J Neurosci Res. 1991;29(1):100-106. [46] Lamas M, González-Mariscal L, Gutiérrez R. Presence of claudins mRNA in the brain. Selective modulation of expression by kindling epilepsy. Brain Res Mol Brain Res. 2002;104(2):250-254.[47] Cruzalegui FH, Bading H. Calcium-regulated protein kinase cascades and their transcription factor targets. Cell Mol Life Sci. 2000;57(3):402-410.[48] The Ministry of Science and Technology of the People’s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30. [49] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84-91. [50] Gao L, Chen ZL, Tian LX, et al. Effects of bloodletting puncture at Jing-Well points in distal ends of finger and toe on survival rate and brain edema in cerebral ischemic rats. J Tradit Chin Med. 2012;32(3):471-476. |
[1] | Liu-Lin Xiong, Jie Chen, Ruo-Lan Du, Jia Liu, Yan-Jun Chen, Mohammed Al Hawwas, Xin-Fu Zhou, Ting-Hua Wang, Si-Jin Yang, Xue Bai. Brain-derived neurotrophic factor and its related enzymes and receptors play important roles after hypoxic-ischemic brain damage [J]. Neural Regeneration Research, 2021, 16(8): 1453-1459. |
[2] | Gao-Jing Xu, Qun Zhang, Si-Yue Li, Yi-Tong Zhu, Ke-Wei Yu, Chuan-Jie Wang, Hong-Yu Xie, Yi Wu. Environmental enrichment combined with fasudil treatment inhibits neuronal death in the hippocampal CA1 region and ameliorates memory deficits [J]. Neural Regeneration Research, 2021, 16(8): 1460-1466. |
[3] | Stefan Kassumeh, Gregor R. Weber, Matthias Nobl, Siegfried G. Priglinger, Andreas Ohlmann. The neuroprotective role of Wnt signaling in the retina [J]. Neural Regeneration Research, 2021, 16(8): 1524-1528. |
[4] | Wan-Chao Yang, Hong-Ling Cao, Yue-Zhen Wang, Ting-Ting Li, Hong-Yu Hu, Qiang Wan, Wen-Zhi Li. Inhibition of nitric oxide synthase aggravates brain injury in diabetic rats with traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(8): 1574-1581. |
[5] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[6] | Meng-Shi Yang, Xiao-Jian Xu, Bin Zhang, Fei Niu, Bai-Yun Liu. Comparative transcriptomic analysis of rat versus mouse cerebral cortex after traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(7): 1235-1243. |
[7] | Qiang Gao, Aaron Leung, Yong-Hong Yang, Benson Wui-Man Lau, Qian Wang, Ling-Yi Liao, Yun-Juan Xie, Cheng-Qi He. Extremely low frequency electromagnetic fields promote cognitive function and hippocampal neurogenesis of rats with cerebral ischemia [J]. Neural Regeneration Research, 2021, 16(7): 1252-1257. |
[8] | Dulce Parra-Villamar, Liliana Blancas-Espinoza, Elisa Garcia-Vences, Juan Herrera-García, Adrian Flores-Romero, Alberto Toscano-Zapien, Jonathan Vilchis Villa, Rodríguez Barrera-Roxana, Soria Zavala Karla, Antonio Ibarra, Raúl Silva-García. Neuroprotective effect of immunomodulatory peptides in rats with traumatic spinal cord injury [J]. Neural Regeneration Research, 2021, 16(7): 1273-1280. |
[9] | Yi-An Zhan, Xin-Liang Qiu, Xu-Zhen Wang, Ning Zhao, Ke-Jian Qian. Reducing LncRNA-5657 expression inhibits the brain inflammatory reaction in septic rats [J]. Neural Regeneration Research, 2021, 16(7): 1288-1293. |
[10] | Min Wang, Juan-Juan Tang, Lin-Xiao Wang, Jun Yu, Li Zhang, Chen Qiao. Hydrogen sulfide enhances adult neurogenesis in a mouse model of Parkinson’s disease [J]. Neural Regeneration Research, 2021, 16(7): 1353-1358. |
[11] | Martin A. Schick, Malgorzata Burek, Carola Y. Förster, Michiaki Nagai, Christian Wunder, Winfried Neuhaus. Hydroxyethylstarch revisited for acute brain injury treatment [J]. Neural Regeneration Research, 2021, 16(7): 1372-1376. |
[12] | Zhe Cheng, Feng-Wu Li, Christopher R. Stone, Kenneth Elkin, Chang-Ya Peng, Redina Bardhi, Xiao-Kun Geng, Yu-Chuan Ding. Normobaric oxygen therapy attenuates hyperglycolysis in ischemic stroke [J]. Neural Regeneration Research, 2021, 16(6): 1017-1023. |
[13] | Shi-Jia Yu, Ming-Jun Yu, Zhong-Qi Bu, Ping-Ping He, Juan Feng. MicroRNA-670 aggravates cerebral ischemia/reperfusion injury via the Yap pathway [J]. Neural Regeneration Research, 2021, 16(6): 1024-1030. |
[14] | Zi-Qi Shao, Shan-Shan Dou, Jun-Ge Zhu, Hui-Qing Wang, Chun-Mei Wang, Bao-Hua Cheng, Bo Bai. Apelin-13 inhibits apoptosis and excessive autophagy in cerebral ischemia/reperfusion injury [J]. Neural Regeneration Research, 2021, 16(6): 1044-1051. |
[15] | Qiu-Shi Gao, Ya-Han Zhang, Hang Xue, Zi-Yi Wu, Chang Li, Ping Zhao . Brief inhalation of sevoflurane can reduce glial scar formation after hypoxic-ischemic brain injury in neonatal rats [J]. Neural Regeneration Research, 2021, 16(6): 1052-1061. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||