Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (7): 622-632.doi: 10.3969/j.issn.1673-5374.2013.07.006
Previous Articles Next Articles
Cuicui Yu1, 2, Junke Wang1
Received:
2012-12-05
Revised:
2013-02-07
Online:
2013-03-05
Published:
2013-03-05
Contact:
Junke Wang, Master, Professor, Chief physician, Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China, junke45@yahoo.com.
About author:
Cuicui Yu★, Master, Attending physician.
Cuicui Yu1, Junke Wang. Neuroprotective effect of penehyclidine hydrochloride on focal cerebral ischemia- reperfusion injury[J]. Neural Regeneration Research, 2013, 8(7): 622-632.
[1] Kaushal V, Schlichter LC. Mechanisms of microglia- mediated neurotoxicity in a new model of the stroke penumbra. J Neurosci. 2008;28(9):2221-2230.[2] Durukan A, Tatlisumak T. Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav. 2007;87(1):179-197.[3] Minnerup J, Schabitz WR. Multifunctional actions of approved and candidate stroke drugs. Neurotherapeutics. 2009;6(1):43-52.[4] Annecke T, Kubitz JC, Kahr S, et al. Effects of sevoflurane and propofol on ischaemia-reperfusion injury after thoracic- aortic occlusion in pigs. Br J Anaesth. 2007;98(5): 581-590.[5] Chen Q, Zeng Y. Anisodamine protects against neuronal death following cerebral ischemia in gerbils. Chin Med J (Engl). 2000;113(7):636-639.[6] Guzmán-De La Garza FJ, Cámara-Lemarroy CR, Ballesteros-Elizondo RG, et al. Ketamine reduces intestinal injury and inflammatory cell infiltration after ischemia/ reperfusion in rats. Surg Today. 2010;40(11):1055-1062. [7] Shen W, Gan J, Xu S, et al. Penehyclidine hydrochloride attenuates LPS-induced acute lung injury involvement of NF-kappaB pathway. Pharmacol Res. 2009;60(4):296-302.[8] Wang LL, Zhan LY, Wu XJ, et al. Effects of penehyclidine hydrochloride on apoptosis of lung tissues in rats with traumatic acute lung injury. Chin J Traumatol. 2010;13(1): 15-19. [9] Han XY, Liu H, Liu CH, et al. Synthesis of the optical isomers of a new anticholinergic drug, penehyclidine hydrochloride (8018). Bioorg Med Chem Lett. 2005; 15(8):1979-1982.[10] He SS, Lin CS, Gu MN, et al. Protective effects of penehyclidine hydrochloride against acute renal injury induced by hemorrhagic shock and lipopolysaccharides in rats. Nan Fang Yi Ke Da Xue Xue Bao. 2011;31(5):899-902.[11] Xiao HT, Liao Z, Meng XM, et al. Characterization of the effect of penehyclidine hydrochloride on muscarinic receptor subtypes mediating the contraction of guinea-pig isolated gastrointestinal smooth muscle. J Pharm Pharmacol. 2009;61(7):949-952.[12] Wang YA, Zhou WX, Li JX, et al. Anticonvulsant effects of phencynonate hydrochloride and other anticholinergic drugs in soman poisoning: neurochemical mechanisms. Life Sci. 2005;78(2):210-223.[13] Li JT, Ruan JX, Zhang ZQ, et al. Effects of pretreatment with 8018 on the toxicokinetics of soman in rabbits and distribution in mice. Life Sci. 2003;73(8):1053-1062.[14] Gorgulu A, Kins T, Cobanoglu S, et al. Reduction of edema and infarction by Memantine and MK-801 after focal cerebral ischaemia and reperfusion in rat. Acta Neurochir (Wien). 2000;142(11):1287-1292.[15] Xiao HT, Liao Z, Meng XM, et al. Underlying mechanism of penehyclidine hydrochloride on isolated rat uterus. Fundam Clin Pharmacol. 2009;23(4):419-421.[16] Zhang YM, Yan YS, Wang LN, et al. A novel rice gene, NRR responds to macronutrient deficiency and regulates root growth. Mol Plant. 2012;5(1):63-72.[17] Hu T, Fu Q, Liu X, et al. Increased acetylcholinesterase and capase-3 expression in the brain and peripheral immune system of focal cerebral ischemic rats. J Neuroimmunol. 2009;211(1-2):84-91.[18] Liu B, Li J, Li L, et al. Electrical stimulation of cerebellar fastigial nucleus promotes the expression of growth arrest and DNA damage inducible gene β and motor function recovery in cerebral ischemia/reperfusion rats. Neurosci Lett. 2012;520(1):110-114.[19] Formichi P, Radi E, Battisti C, et al. Cerebrolysin administration reduces oxidative stress-induced apoptosis in limphocytes from healthy individuals. J Cell Mol Med. 2012;16(11):2840-2843.[20] D'Amelio M, Cavallucci V, Cecconi F. Neuronal caspase-3 signaling: not only cell death. Cell Death Differ. 2010;17(7): 1104-1114.[21] Di Menna L, Molinaro G, Di Nuzzo L, et al. Fingolimod protects cultured cortical neurons against excitotoxic death. Pharmacol Res. 2012;67(1):1-9.[22] Gabryel B, Kost A, Kasprowska D. Neuronal autophagy in cerebral ischemia--a potential target for neuroprotective strategies? Pharmacol Rep. 2012;64(1):1-15.[23] Wlodkowic D, Skommer J, Darzynkiewicz Z. Cytometry of apoptosis. Historical perspective and new advances. Exp Oncol. 2012;34(3):255-262.[24] Cheng EH, Kirsch DG, Clem RJ, et al. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science. 1997; 278(5345):1966-1968.[25] Tilly JL, Tilly KI, Kenton ML, et al. Expression of members of the Bcl-2 gene family in the immature rat ovary: equine chorionic gonadotropin-mediated inhibition of granulosa cell apoptosis is associated with decreased bax and constitutive Bcl-2 and bcl-xlong messenger ribonucleic acid levels. Endocrinology. 1995;136(1): 232-241.[26] Kim HS, Park MS, Lee JK, et al. Time point expression of apoptosis regulatory proteins in a photochemically- induced focal cerebral ischemic rat brain. Chonnam Med J. 2011;47(3):144-149. [27] Shtilbans V, Wu M, Burstein DE. Evaluation of apoptosis in cytologic specimens. Diagn Cytopathol. 2010;38(9):685-697.[28] Yu SS, Zhao J, Zheng WP, et al. Neuroprotective effect of 4-hydroxybenzyl alcohol against transient focal cerebral ischemia via anti-apoptosis in rats. Brain Res. 2010;1308: 167-175.[29] Yang B, El Nahas AM, Thomas GL, et al. Caspase-3 and apoptosis in experimental chronic renal scarring. Kidney Int. 2001;60(5):1765-1776.[30] Kirsch DG, Doseff A, Chau BN, et al. Caspase-3- dependent cleavage of Bcl-2 promotes release of cytochrome c. J Biol Chem. 1999;274(30):21155-21161.[31] Martinou JC, Youle RJ. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell. 2011;21(1):92-101. [32] Hovelsø N, Sotty F, Montezinho LP, et al. Therapeutic potential of metabotropic glutamate receptor modulators. Curr Neuropharmacol. 2012;10(1):12-48. [33] Young AB, Fagg GE. Excitatory amino acid receptors in the brain: membrane binding and receptor autoradiographic approaches. Trends Pharmacol Sci. 1990;11(3):126-133.[34] Monaghan DT, Bridges RJ, Cotman CW. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol. 1989;29:365-402.[35] Wei J, Quast MJ. Effect of nitric oxide synthase inhibitor on a hyperglycemic rat model of reversible focal ischemia: detection of excitatory amino acids release and hydroxyl radical formation. Brain Res. 1998;791(1-2):146-156.[36] Dawson LA, Djali S, Gonzales C, et al. Characterization of transient focal ischemia-induced increases in extracellular glutamate and aspartate in spontaneously hypertensive rats. Brain Res Bull. 2000;53(6):767-776.[37] Mahesh VB, Brann DW. Regulatory role of excitatory amino acids in reproduction. Endocrine. 2005;28(3):271-280.[38] Javitt DC, Schoepp D, Kalivas PW, et al. Translating glutamate: from pathophysiology to treatment. Sci Transl Med. 2011;3(102):102mr2.[39] Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001; 65(1):1-105.[40] Nishizawa Y. Glutamate release and neuronal damage in ischemia. Life Sci. 2001;69(4):369-381.[41] Degracia DJ. Towards a dynamical network view of brain ischemia and reperfusion. Part II: a post-ischemic neuronal state space. J Exp Stroke Transl Med. 2010;3(1):72-89.[42] Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci. 1990;13:171-182.[43] Farber NB. The NMDA receptor hypofunction model of psychosis. Ann N Y Acad Sci. 2003;1003:119-130.[44] Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science. 1992; 258(5082):597-603.[45] Monyer H, Burnashev N, Laurie DJ, et al. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994;12(3):529-540.[46] Luo T, Wu WH, Chen BS. NMDA receptor signaling: death or survival? Front Biol. 2011;6(6):468-476.[47] Santangelo RM, Acker TM, Zimmerman SS, et al. Novel NMDA receptor modulators: an update. Expert Opin Ther Pat. 2012;22(11):1337-1352. [48] Luo X, Baba A, Matsuda T, et al. Susceptibilities to and mechanisms of excitotoxic cell death of adult mouse inner retinal neurons in dissociated culture. Invest Ophthalmol Vis Sci. 2004;45(12):4576-4582.[49] Reiter RJ, Manchester LC, Tan DX. Neurotoxins: free radical mechanisms and melatonin protection. Curr Neuropharmacol. 2010;8(3):194-210.[50] Faustino JV, Wang X, Johnson CE, et al. Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J Neurosci. 2011;31(36):12992-30001.[51] Olmez I, Ozyurt H. Reactive oxygen species and ischemic cerebrovascular disease. Neurochem Int. 2012;60(2): 208-212. [52] Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke. 2009; 4(6):461-470.[53] Zhao Z, Wang W, Guo H, et al. Antidepressant-like effect of liquiritin from Glycyrrhiza uralensis in chronic variable stress induced depression model rats. Behav Brain Res. 2008;194(1):108-113.[54] Bito T, Nishigori C. Impact of reactive oxygen species on keratinocyte signaling pathways. J Dermatol Sci. 2012; 68(1):3-8. [55] Griendling KK, Ushio-Fukai M. Reactive oxygen species as mediators of angiotensin II signaling. Regul Pept. 2000;91(1-3):21-27.[56] Shi LL, Chen BN, Gao M, et al. The characteristics of therapeutic effect of pinocembrin in transient global brain ischemia/reperfusion rats. Life Sci. 2011;88(11-12):521-528. [57] Xiao X, Liu J, Hu J, et al. Protective effects of protopine on hydrogen peroxide-induced oxidative injury of PC12 cells via Ca(2+) antagonism and antioxidant mechanisms. Eur J Pharmacol. 2008;591(1-3):21-27.[58] Yang L, Shah K, Wang H, et al. Characterization of neuroprotective effects of biphalin, an opioid receptor agonist, in a model of focal brain ischemia. J Pharmacol Exp Ther. 2011;339(2):499-508.[59] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84-91.[60] Majid A, He YY, Gidday JM, et al. Differences in vulnerability to permanent focal cerebral ischemia among 3 common mouse strains. Stroke. 2000;31(11): 2707-2714.[61] Landberg G, Ostlund H, Nielsen NH, et al. Downregulation of the potential suppressor gene IGFBP-rP1 in human breast cancer is associated with inactivation of the retinoblastoma protein, cyclin E overexpression and increased proliferation in estrogen receptor negative tumors. Oncogene. 2001;20(27):3497-505.[62] Ruan W, Xu E, Xu F, et al. IGFBP7 plays a potential tumor suppressor role in colorectal carcinogenesis. Cancer Biol Ther. 2007;6(3):354-359. [63] Zhou W, Yoshioka M, Yokogoshi H. Sub-chronic effects of s-limonene on brain neurotransmitter levels and behavior of rats. J Nutr Sci Vitaminol (Tokyo). 2009;55(4):367-373.[64] Cao Y, Mao X, Sun C, et al. Baicalin attenuates global cerebral ischemia/reperfusion injury in gerbils via anti-oxidative and anti-apoptotic pathways. Brain Res Bull. 2011;85(6):396-402.[65] Katsube N, Sunaga K, Aishita H, et al. ONO-1603, a potential antidementia drug, delays age-induced apoptosis and suppresses overexpression of glyceraldehyde-3-phosphate dehydrogenase in cultured central nervous system neurons. J Pharmacol Exp Ther. 1999;288(1):6-13.[66] Shkryl VM, Nikolaenko LM, Kostyuk PG, et al. High-threshold calcium channel activity in rat hippocampal neurones during hypoxia. Brain Res. 1999;833(2): 319-328.[67] Almeida A, Delgado-Esteban M, Bolanos JP, et al. Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in primary culture. J Neurochem. 2002;81(2): 207-217. |
[1] | Liu-Lin Xiong, Jie Chen, Ruo-Lan Du, Jia Liu, Yan-Jun Chen, Mohammed Al Hawwas, Xin-Fu Zhou, Ting-Hua Wang, Si-Jin Yang, Xue Bai. Brain-derived neurotrophic factor and its related enzymes and receptors play important roles after hypoxic-ischemic brain damage [J]. Neural Regeneration Research, 2021, 16(8): 1453-1459. |
[2] | Stefan Kassumeh, Gregor R. Weber, Matthias Nobl, Siegfried G. Priglinger, Andreas Ohlmann. The neuroprotective role of Wnt signaling in the retina [J]. Neural Regeneration Research, 2021, 16(8): 1524-1528. |
[3] | Wan-Chao Yang, Hong-Ling Cao, Yue-Zhen Wang, Ting-Ting Li, Hong-Yu Hu, Qiang Wan, Wen-Zhi Li. Inhibition of nitric oxide synthase aggravates brain injury in diabetic rats with traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(8): 1574-1581. |
[4] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[5] | Meng-Shi Yang, Xiao-Jian Xu, Bin Zhang, Fei Niu, Bai-Yun Liu. Comparative transcriptomic analysis of rat versus mouse cerebral cortex after traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(7): 1235-1243. |
[6] | Yi-An Zhan, Xin-Liang Qiu, Xu-Zhen Wang, Ning Zhao, Ke-Jian Qian. Reducing LncRNA-5657 expression inhibits the brain inflammatory reaction in septic rats [J]. Neural Regeneration Research, 2021, 16(7): 1288-1293. |
[7] | Martin A. Schick, Malgorzata Burek, Carola Y. Förster, Michiaki Nagai, Christian Wunder, Winfried Neuhaus. Hydroxyethylstarch revisited for acute brain injury treatment [J]. Neural Regeneration Research, 2021, 16(7): 1372-1376. |
[8] | Shi-Jia Yu, Ming-Jun Yu, Zhong-Qi Bu, Ping-Ping He, Juan Feng. MicroRNA-670 aggravates cerebral ischemia/reperfusion injury via the Yap pathway [J]. Neural Regeneration Research, 2021, 16(6): 1024-1030. |
[9] | Zi-Qi Shao, Shan-Shan Dou, Jun-Ge Zhu, Hui-Qing Wang, Chun-Mei Wang, Bao-Hua Cheng, Bo Bai. Apelin-13 inhibits apoptosis and excessive autophagy in cerebral ischemia/reperfusion injury [J]. Neural Regeneration Research, 2021, 16(6): 1044-1051. |
[10] | Qiu-Shi Gao, Ya-Han Zhang, Hang Xue, Zi-Yi Wu, Chang Li, Ping Zhao . Brief inhalation of sevoflurane can reduce glial scar formation after hypoxic-ischemic brain injury in neonatal rats [J]. Neural Regeneration Research, 2021, 16(6): 1052-1061. |
[11] | Jian Zhang, Ren-Jie Wang, Miao Chen, Xiao-Yin Liu, Ke Ma, Hui-You Xu, Wu-Sheng Deng, Yi-Chao Ye, Wei-Xin Li, Xu-Yi Chen, Hong-Tao Sun. Collagen/heparan sulfate porous scaffolds loaded with neural stem cells improve neurological function in a rat model of traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(6): 1068-1077. |
[12] | Muyue Yang, Zhen Yang, Pu Wang, Zhihui Sun. Current application and future directions of photobiomodulation in central nervous diseases [J]. Neural Regeneration Research, 2021, 16(6): 1177-1185. |
[13] | Mariam Rizk, Justin Vu, Zhi Zhang. Impact of pediatric traumatic brain injury on hippocampal neurogenesis [J]. Neural Regeneration Research, 2021, 16(5): 926-933. |
[14] | Igor Iezhitsa, Renu Agarwal. New solutions for old challenges in glaucoma treatment: is taurine an option to consider? [J]. Neural Regeneration Research, 2021, 16(5): 967-971. |
[15] | Magdalini Tsintou, Kyriakos Dalamagkas, Tara L. Moore, Yogesh Rathi, Marek Kubicki, Douglas L. Rosene, Nikos Makris. The use of hydrogel-delivered extracellular vesicles in recovery of motor function in stroke: a testable experimental hypothesis for clinical translation including behavioral and neuroimaging assessment approaches [J]. Neural Regeneration Research, 2021, 16(4): 605-613. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||