中国神经再生研究(英文版) ›› 2014, Vol. 9 ›› Issue (13): 1261-1264.doi: 10.4103/1673-5374.137571

• 观点:神经损伤修复保护与再生 • 上一篇    下一篇

成人髓鞘形成–完成中枢神经系统的可塑性

  

  • 收稿日期:2014-07-07 出版日期:2014-07-11 发布日期:2014-07-11

Adult myelination: wrapping up neuronal plasticity

Megan O’Rourke 1, Robert Gasperini 1, 2, Kaylene M. Young 1   

  1. 1 Menzies Research Institute Tasmania, University of Tasmania, Hobart 7000, Australia
    2 The School of Medicine, University of Tasmania, Hobart 7000, Australia
  • Received:2014-07-07 Online:2014-07-11 Published:2014-07-11
  • Contact: Kaylene M. Young, Ph.D., Menzies Research Institute Tasmania, University of Tasmania, Hobart 7000, Australia. kaylene.young@utas.edu.au.
  • Supported by:

    Work in the authors’ laboratory was supported by the Australian National Health and Medical Research Council.

摘要:

成人中枢神经系统具有很明显的适应性,它保留有生成、集合新细胞,改造既存脑回路的能力。在过去的25年中,有大量研究提供了内源性神经干细胞和祖细胞的产生和分化潜能的关键洞察报告,并且描述出中枢神经系统三个主要的可塑性机制。然而我们仍然无法充分了解神经可塑性是如何通过神经网络层次调节单个细胞水平,越来越多的证据支持这一想法,即神经发生,突触发生和髓鞘重塑有机联合起来可以改变成人中枢神经系统中的神经回路结构与功能。
来自澳大利亚塔斯马尼亚大学Kaylene M Young教授要重点强调的是中枢神经系统可塑性机制之间互动的可能性。而新的基因和成像工具已经让我们在理解每一种可塑性机制的过程中提供了极大便利,但仍有许多工作要做,用以确定突触可塑性,神经发生和髓鞘可塑性是否能够像我们提出的那样,以协调合作的方式调节神经网络并支持相关功能,如跨越多个中枢神经系统中的学习和记忆功能。

Abstract:

The adult CNS is remarkably adaptable – it retains the ability to generate and integrate new cells, and remodel pre-existing circuits. Intense research over the last 25 years has provided critical insight into the cell generation and differentiation potential of endogenous neural stem and progenitor cells, and has described three core CNS plasticity mechanisms. While we are still a long way from fully understanding how neural plasticity is regulated from the level of the individual cell, through to the level of the neural network, there is growing evidence to support the idea that neurogenesis, synaptogenesis and myelin remodelling dynamically and co-operatively alter the structure and function of neural circuits in the adult CNS.
Herein Dr. Kaylene M Young comes from University of Tasmania, Australia highlights the potential for interaction between key CNS plasticity mechanisms. While new genetic and imaging tools have led to major advances in our understanding of each plasticity mechanism separately, much work remains to be done to determine whether synaptic plasticity, neurogenesis and myelin plasticity operate in a coordinated and synergistic manner, as we have proposed, to regulate neural networks and support functions such as learning and memory, which span multiple CNS regions.

Key words: oligodendrocyte, OPC, adult, central nervous system, NG2, oligodendrogenesis, plasticity, remodelling, myelination, neural stem cells, synapse