中国神经再生研究(英文版) ›› 2015, Vol. 10 ›› Issue (8): 1228-1230.doi: 10.4103/1673-5374.162751

• 观点:视神经损伤修复保护与再生 • 上一篇    下一篇

视网膜神经节细胞类型可能揭示其对神经保护的特异反应

  

  • 收稿日期:2015-05-23 出版日期:2015-08-24 发布日期:2015-08-24

Identifying specific RGC types may shed light on their idiosyncratic responses to neuroprotection

Manuel Vidal-Sanz, Francisco M. Nadal-Nicolás, Francisco J. Valiente-Soriano, Marta Agudo-Barriuso, Maria P. Villegas-Pérez   

  • Received:2015-05-23 Online:2015-08-24 Published:2015-08-24
  • Contact: Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, 30120 El Palmar, Murcia, Spain
  • Supported by:

    This research is supported by Spanish Ministry of Economy and Competitiveness: SAF-2012-38328; ISCIII-FEDER “Una manera de hacer Europa” PI13/01266, PI13/00643, RETICS: RD12/0034/0014.

摘要:

视网膜神经节细胞(RGC)位于视网膜的最内层,是唯一的输出视网膜神经元,并向大脑主要视网膜接收器目标区域传送光线信息,同时负责图像和非图像的视觉功能形成。现被发现的超过20种视网膜神经节细胞,每个都有自己的树突状形态和生理特点,有各自的目标区域和视觉功能。想要研究各种损伤引起的或遗传性视网膜变性造成的视网膜神经节细胞反应,就需要对这些神经元进行鉴定。因为视网膜神经节细胞与移位无长突细胞在RGC层内共同分享它们的解剖位置,众多的视网膜神经节细胞本身具有重叠的胞体大小,经典的形态学方法无法区别这两个类别的视网膜神经细胞。目前已知的是,鉴别视网膜神经节细胞主要是与施加到它们的主要视网膜接收器靶核在大脑逆行示踪,如上丘,或它们的主要轴突输出以及视神经。尽管已有这些方法,但绝大多数视网膜神经节细胞不允许不同类型RGC之间的最有效鉴别。施加到视神经的逆向转移会引起在视网膜神经节细胞的大规模逆行标记示踪剂,而示踪应用到上丘标记后,视网膜神经节细胞会在晶核,以及邻近区域最为突。事实上,在上丘注入视束或示踪剂,可能会导致神经元中位于不同区域相邻的脑杂散标记。发现新的合适的分子标记物,以确定其他类型的视网膜神经节细胞能够解密并解剖出视网膜神经节细胞的反应,从而进一步提高我们对每个这些类型分子机制的了解,使得它们易受和/或能够存活的影响,并适合于治疗干预或轴突再生。事实上,新发现的视网膜神经节细胞特定类型分子标记或表征可以允许应用不同类型的视网膜神经节细胞的干预轴突损伤,如神经元存活,轴突再生,突触形成和功能重塑。

Abstract:

Identifying specific RGC types may shed light on their idiosyncratic responses to neuroprotection Retinal ganglion cells (RGCs) are located in the innermost layer of the retina and are the only output retinal neurons, conveying light information to the main retinorecipient target regions of the brain responsible for the image and non-image forming visual functions. There are well over twenty RGC types, each with its own dendritic morphological and physiological characteristics, target territories and visual functions. The study of the responses of RGCs to various injury-induced or inherited retinal degenerations requires the identification of these neurons. Up to know RGCs have been identified mainly with retrograde tracers applied to their principal retinorecipient target nuclei in the brain, the superior colliculi (SCi), or to their main axonal output, the optic nerve (ON). These methods, although most efficient to label the great majority of RGCs do not allow distinction between different RGC types. Retrogradely transported tracers applied to the ON result in massive retrograde labelling of RGCs, while tracer application to the SCi labels most RGCs projecting to these nuclei as well as to neighbouring areas. Indeed, injection into the optic tract or tracer application over the SCi may result in spurious labelling of neurons in the brain located in different neighbour areas. Prof. Manuel Vidal-Sanz (Universidad de Murcia, Spain) considered that new discoveries of suitable molecular markers to identify other types of RGCs would allow deciphering and dissecting out the responses of RGCs and thus further advance our knowledge of the molecular mechanisms in each of these types that render them susceptible and/or capable of survival, amenable to rescuing intervention or axonal regeneration. Indeed, new discoveries or characterization of molecular markers for specific types of RGCs may allow further characterization of the responses of different types of RGCs to axonal injury, such as neuronal survival, axonal regeneration, synapse formation and re-establishment of function.