中国神经再生研究(英文版) ›› 2016, Vol. 11 ›› Issue (1): 69-70.doi: 10.4103/1673-5374.169623

• 观点:神经损伤修复保护与再生 • 上一篇    下一篇

瘫痪肌肉活动会给神经可塑性形成一种健康环境么?

  

  • 收稿日期:2015-09-25 出版日期:2016-01-15 发布日期:2016-01-15
  • 基金资助:

    该研究得到CDMRP SCIRP(W81XWH-10-1-0793),迈阿密瘫痪治疗项目和Buoniconti基金资助。

Skeletal muscle activity and CNS neuro-plasticity

Rachel Zhorne, Shauna Dudley-Javoroski, Richard K. Shields   

  1. Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, IA, USA
  • Received:2015-09-25 Online:2016-01-15 Published:2016-01-15
  • Contact: Richard K. Shields, Ph.D., P.T., F.A.P.T.A.,richard-shields@uiowa.edu.
  • Supported by:

    This work is supported in part by awards from the National Institutes of Health – National Center for Medical Rehabilitation Research (R01HD084645, R01HD082109).

摘要:

定期骨骼肌活动给全身健康带来的益处是有据可查的。增强的骨骼肌活动与全身代谢率改进、糖尿病和肥胖发生率降低以及随着年龄的功能改善相关。尽管存在这些已知的系统性好处,但许多健康人难以达到推荐的每日骨骼肌肉活动或者运动量,这些活动是可以防止代谢性疾病的。文中讨论了骨骼活动和中枢神经系统信号传导的最新研究结果。其中一个中心主题是适当的常规骨骼肌肉活动可能有助于优化神经可塑性,增强干细胞增殖和分化能力,以及改善人中枢神经系统损伤再生方法的整体环境,修复脊髓损伤,脑卒中,多发性硬化症,封闭性颅脑损伤等。一种诱导人麻痹骨骼肌活动的方法是电激活骨骼肌。神经肌肉电刺激直接激活外周神经,由运动神经元和感觉轴突与脊髓肌肉通信,因此大多数外伤性脊髓损伤患者都会有上运动神经元损伤。一个完整的上运动神经元损伤会阻碍运动皮层到肌肉的任何自愿信号;但较低的运动神经元和其相关联的轴突被保留,使脊髓和肌肉之间能够进行外周的通信。神经肌肉电刺激可以直接激活周围神经,其中运动和感觉轴突可以与脊髓肌肉通信。神经再生过程将需要一个健康的全身性细胞环境,而一个常规剂量的骨骼肌活性可能是促进周围和中枢神经系统之间健康通信的一种安全和有效的方法。但目前仍需要有更多的神经再生各个领域的研究,有分子神经学家、康复专家、细胞工程、神经科、神经外科医生,和跨学科之间的合作将有可能使神经再生技术更好地应用与人类神经系统疾病。
 

Abstract:

The systemic health benefits of regular skeletal muscle activity are well documented. Increased skeletal muscle activity is associated with an improved systemic metabolic rate, reduced incidence of diabetes and obesity, and improved function with age. Despite these known systemic benefits, many healthy people do not meet the recommended daily dose of skeletal muscle activity (exercise) needed to prevent metabolic disease. People with central nervous system (CNS) damage (from complete spinal cord injury, for example), are even further compromised as they are unable to activate their own musculature. In this perspective paper, we discuss recent findings relating skeletal muscle activity and CNS signaling. A central theme is that appropriately prescribed skeletal muscle activity (rehabilitation) may have important implications for optimizing neural plasticity, enhancing stem cell proliferation and differentiation, and improving the overall environment for regenerative approaches for people with CNS damage (spinal cord injury, stroke, multiple sclerosis, closed cranial trauma, etc.). One method to induce skeletal muscle activity in people with paralysis is by activating the skeletal muscle electrically. Neuromuscular electrical stimulation directly activates peripheral nerves (not muscle), which consist of the motor and sensory axons that communicate with the muscle from the spinal cord. Most people with traumatic spinal cord injury, for example, have an upper motor neuron injury. A complete upper motor neuron injury prevents any voluntary signal from the motor cortex to the muscle; but the lower motor neuron and its associated axons are retained, allowing peripheral communication between the spinal cord and the muscle.