中国神经再生研究(英文版) ›› 2016, Vol. 11 ›› Issue (2): 242-243.doi: 10.4103/1673-5374.177728

• 观点:退行性病与再生 • 上一篇    下一篇

四氢化贯叶金丝桃素靶标内质网自噬激活:干预阿尔茨海默病的可能机制

  

  • 收稿日期:2015-12-18 出版日期:2016-02-15 发布日期:2016-02-15
  • 基金资助:

    这项工作是由科技基金-1130929(PB)和PB-Conicyt(2007年12月)。VC由CONICYT#21151194奖学金支持。

Tetrahydrohyperforin (IDN5706) targets the endoplasmic reticulum for autophagy activation: potential mechanism for Alzheimer’s disease therapy

Alexis González, Viviana A. Cavieres, Nibaldo C. Inestrosa,Patricia V. Burgos   

  1. Instituto de Fisiología, Facultad de Medicina; Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile (González A, Cavieres VA, Burgos PV)
    Centro de Envejecimiento y Regeneración (CARE); Centro UC Síndrome de Down; Pontificia Universidad Católica de Chile, Santiago, Chile/Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine,University of New South Wales, Sydney, Australia/Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile (Inestrosa NC)
  • Received:2015-12-18 Online:2016-02-15 Published:2016-02-15
  • Contact: Patricia V. Burgos, Ph.D., patricia.burgos@uach.cl.Both authors contributed equally to this paper.
  • Supported by:

    This work was supported by FONDECYT-1130929 (PB) and PB-Conicyt (No 12/2007) to NCI. AG is supported by CONICYT#21110746, MECESUPAUS1203 and DIDUAChD#201303. VC is supported by CONICYT# 21151194 fellowship.

摘要:

迄今为止,还没有能够停止破坏脑细胞的神经退行性疾病治疗策略,目前所有的可利用的治疗仅能补偿突触传递损失,从而给患者带来一些边缘效果。因此,目前迫切需要找到防止或减缓这一重大公共卫生问题进展的有效治疗方法。为防止脑细胞损失,我们需要识别和理解这种疾病的确切原因。文章认为内质网自噬相关反应的阳性调节剂,如四氢化贯叶金丝桃素,是发现针对阿尔茨海默病有希望的未来疗法的发展方向。最近他们小组发布的一项研究使用贯叶金丝桃素的神经保护半合成衍生物,圣约翰草厂(贯叶连翘)的一种活性分子,四氢化贯叶金丝桃素(IDN5706),已经证明这种化合物可以防止在阿尔茨海默病小鼠模型的病理改变。具体地讲,它能诱导长时程增强,并防止阿尔茨海默病相关的空间记忆损失,减少tau蛋白磷酸化,并降低Aβ肽水平。阐明这种化合物的分子机制可以解释其有益效果,他们最近发现,IDN5706靶向内质网自噬活化,引发条目未成熟的糖基化,并在内质网相关结构中新合成淀粉样前体蛋白,这有利于它降解由Atg5引发的依赖性自噬,并抑制Aβ肽的形成。自噬是一个主要的溶酶体降解途径,已被广泛研究在年龄相关的神经退行性疾病中,例如阿尔茨海默病。虽然一些研究表明,诱导自噬可延缓老化,能够降低神经退行性疾病动物模型的神经元功能障碍的危险,但我们对潜在的机制仍然知之甚少。在这方面,他们最近的发现与神经保护化合物IDN5706表明,内质网或许是自噬活化的主要调节器,必要时其在糖基化扰动时可以促进淀粉样前体蛋白清除,并明确了支持自噬可以在内质网质量控制方面发挥关键作用这一假设。

Abstract:

To date, there is no therapy to stop the destruction of brain cells and all the available treatments only compensate for the loss of synaptic transmission, thus resulting in marginal benefits to patients. Therefore, there is an urgent need to find effective therapies that prevent or slow down the progression of this major public health problem. To prevent brain cell loss, we need to identify and understand the exact causes of the disease. In the present perspective, we propose that positive regulators of ER autophagy-related responses, such as tetrahydrohyperforin, are promising niches for the discovery of future therapies against AD. A recent study published by our group using a neuroprotective semisynthetic derivative of hyperforin, the active molecule in the St John´s Wort plant (Hypericum perforatum) called tetrahydrohyperforin (IDN5706), has demonstrated that this compound prevents the neuropathological changes in a mouse model of AD. Specifically, it induces long-term potentiation (LTP) and prevents AD-associated loss of spatial memory, reduces tau hyperphosphorylation, and decreases Abeta peptide levels. In an effort to elucidate the molecular mechanism that could explain the beneficial effects of this compound, we recently showed that IDN5706 targets the ER for autophagy activation, triggering entry of immaturely glycosylated, newly-synthesized APP (iAPP) in ER-associated structures, which favors its degradation by Atg5-dependent autophagy, leading to inhibition of Abeta peptide formation. Autophagy, a major lysosomal degradative pathway, has been extensively studied in age-related neurodegenerative disorders, such as AD, due to its strong connection between aging and the progressive deterioration in the proteostatic capacity of the brain. Although, several studies indicate that induction of autophagy delays aging, reducing the risk of neurodegenerative disorders and neuronal dysfunction in animal models, the underlying mechanisms still remain poorly understood. In this context, our recent findings with the neuroprotective compound IDN5706 revealed that the ER could be a major regulator for autophagy activation, necessary to promote the clearance of APP upon perturbations in its glycosylation, strongly supporting the hypothesis that autophagy could play a key role in quality control at the ER.