中国神经再生研究(英文版) ›› 2016, Vol. 11 ›› Issue (6): 861-864.doi: 10.4103/1673-5374.184446

• 综述:神经损伤修复保护与再生 •    下一篇

内源生物电:中枢神经系统损伤修复和再生的可能调节者

  

  • 出版日期:2016-06-30 发布日期:2016-06-30

Endogenous bioelectric fields: a putative regulator of wound repair and regeneration in the central nervous system

Matthew L. Baer, Raymond J. Colello*   

  1. Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
  • Online:2016-06-30 Published:2016-06-30
  • Contact: Raymond J. Colello, Ph.D., raymond.colello@vcuhealth.org

摘要:

损伤诱导的直流生物电领域是协调细胞反应对中枢神经系统损伤的理想信号,因为它们本质上是定向的,它们可以引导细胞向病变部位移动(这一过程称为趋电性),并且因为它们的强度与损伤严重程度成正比,因此它们可以刺激适当稳健的细胞应答。直流生物电领域的重要性在于它们在损伤位点是一种内源信号,一旦达到一定的阈值,可以激活先天再生反应在细胞内的预编程产生,其特征是细胞分化中的迁移、增殖以及改变。直流生物电领域一旦被激活,再生生理会自发地发生,因此如果可能只需要最少限度,并可开始后续的治疗干预。哺乳动物中枢神经系统的创伤性损伤特征之一是功能恢复能力极弱,这在很大程度上是因为伤口修复过程中囊腔和胶质瘢痕的形成通常会抑制再生。与此相反,许多非哺乳脊椎动物表现出了脊髓横断、骨皮质刀伤、梗塞后极佳的功能恢复能力,甚至脑大部分组织损失后的完全再生。这些再生潜能的差异基本存在于外周组织,如非哺乳脊椎动物表现出了肢体、尾巴、心室、颚、晶状体和角膜再生的例子。受损组织的再生能力与损伤引起的直流生物电领域是密切相关的,该领域会在损伤后开始增强,并且与非再生组织相比,再生组织中的直流生物电领域会达到一个更大的强度。在外周组织中,损伤诱发的直流生物电领域对刺激再生来说都是必要和足够的:衰减内源性直流生物电领域中止是自然发生的,而增强内源性直流生物电领域可以诱导通常不表达再生的物种发生组织再生。

Abstract:

Studies on a variety of highly regenerative tissues, including the central nervous system (CNS) in non-mammalian vertebrates, have consistently demonstrated that tissue damage induces the formation of an ionic current at the site of injury. These injury currents generate electric fields (EF) that are 100-fold increased in intensity over that measured for uninjured tissue. In vitro and in vivo experiments have convincingly demonstrated that these electric fields (by their orientation, intensity and duration) can drive the migration, proliferation and differentiation of a host of cell types. These cellular behaviors are all necessary to facilitate regeneration as blocking these EFs at the site of injury inhibits tissue repair while enhancing their intensity promotes repair. Consequently, injury-induced currents, and the EFs they produce, represent a potent and crucial signal to drive tissue regeneration and repair. In this review, we will discuss how injury currents are generated, how cells detect these currents and what cellular responses they can induce. Additionally, we will describe the growing evidence suggesting that EFs play a key role in regulating the cellular response to injury and may be a therapeutic target for inducing regeneration in the mammalian CNS.

Key words: electric fields, injury current, regeneration, galvanotaxis, glia, traumatic brain injury, migration, proliferation